@article{ZoellerBenZion2014, author = {Z{\"o}ller, Gert and Ben-Zion, Yehuda}, title = {Large earthquake hazard of the San Jacinto fault zone, CA, from long record of simulated seismicity assimilating the available instrumental and paleoseismic data}, series = {Pure and applied geophysics}, volume = {171}, journal = {Pure and applied geophysics}, number = {11}, publisher = {Springer}, address = {Basel}, issn = {0033-4553}, doi = {10.1007/s00024-014-0783-1}, pages = {2955 -- 2965}, year = {2014}, abstract = {We investigate spatio-temporal properties of earthquake patterns in the San Jacinto fault zone (SJFZ), California, between Cajon Pass and the Superstition Hill Fault, using a long record of simulated seismicity constrained by available seismological and geological data. The model provides an effective realization of a large segmented strike-slip fault zone in a 3D elastic half-space, with heterogeneous distribution of static friction chosen to represent several clear step-overs at the surface. The simulated synthetic catalog reproduces well the basic statistical features of the instrumental seismicity recorded at the SJFZ area since 1981. The model also produces events larger than those included in the short instrumental record, consistent with paleo-earthquakes documented at sites along the SJFZ for the last 1,400 years. The general agreement between the synthetic and observed data allows us to address with the long-simulated seismicity questions related to large earthquakes and expected seismic hazard. The interaction between m a parts per thousand yen 7 events on different sections of the SJFZ is found to be close to random. The hazard associated with m a parts per thousand yen 7 events on the SJFZ increases significantly if the long record of simulated seismicity is taken into account. The model simulations indicate that the recent increased number of observed intermediate SJFZ earthquakes is a robust statistical feature heralding the occurrence of m a parts per thousand yen 7 earthquakes. The hypocenters of the m a parts per thousand yen 5 events in the simulation results move progressively towards the hypocenter of the upcoming m a parts per thousand yen 7 earthquake.}, language = {en} } @article{ZoellerHolschneider2014, author = {Z{\"o}ller, Gert and Holschneider, Matthias}, title = {Induced seismicity: What is the size of the largest expected earthquake?}, series = {The bulletin of the Seismological Society of America}, volume = {104}, journal = {The bulletin of the Seismological Society of America}, number = {6}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120140195}, pages = {3153 -- 3158}, year = {2014}, abstract = {The injection of fluids is a well-known origin for the triggering of earthquake sequences. The growing number of projects related to enhanced geothermal systems, fracking, and others has led to the question, which maximum earthquake magnitude can be expected as a consequence of fluid injection? This question is addressed from the perspective of statistical analysis. Using basic empirical laws of earthquake statistics, we estimate the magnitude M-T of the maximum expected earthquake in a predefined future time window T-f. A case study of the fluid injection site at Paradox Valley, Colorado, demonstrates that the magnitude m 4.3 of the largest observed earthquake on 27 May 2000 lies very well within the expectation from past seismicity without adjusting any parameters. Vice versa, for a given maximum tolerable earthquake at an injection site, we can constrain the corresponding amount of injected fluids that must not be exceeded within predefined confidence bounds.}, language = {en} } @article{HolschneiderZoellerClementsetal.2014, author = {Holschneider, Matthias and Z{\"o}ller, Gert and Clements, R. and Schorlemmer, Danijel}, title = {Can we test for the maximum possible earthquake magnitude?}, series = {Journal of geophysical research : Solid earth}, volume = {119}, journal = {Journal of geophysical research : Solid earth}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2013JB010319}, pages = {2019 -- 2028}, year = {2014}, language = {en} }