@article{EvansHyde2022, author = {Evans, Myfanwy E. and Hyde, Stephen T.}, title = {Symmetric Tangling of Honeycomb Networks}, series = {Symmetry}, volume = {14}, journal = {Symmetry}, edition = {9}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2073-8994}, doi = {10.3390/sym14091805}, pages = {1 -- 13}, year = {2022}, abstract = {Symmetric, elegantly entangled structures are a curious mathematical construction that has found their way into the heart of the chemistry lab and the toolbox of constructive geometry. Of particular interest are those structures—knots, links and weavings—which are composed locally of simple twisted strands and are globally symmetric. This paper considers the symmetric tangling of multiple 2-periodic honeycomb networks. We do this using a constructive methodology borrowing elements of graph theory, low-dimensional topology and geometry. The result is a wide-ranging enumeration of symmetric tangled honeycomb networks, providing a foundation for their exploration in both the chemistry lab and the geometers toolbox.}, language = {en} } @misc{EvansHyde2022, author = {Evans, Myfanwy E. and Hyde, Stephen T.}, title = {Symmetric Tangling of Honeycomb Networks}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1282}, issn = {1866-8372}, doi = {10.25932/publishup-57084}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570842}, pages = {13}, year = {2022}, abstract = {Symmetric, elegantly entangled structures are a curious mathematical construction that has found their way into the heart of the chemistry lab and the toolbox of constructive geometry. Of particular interest are those structures—knots, links and weavings—which are composed locally of simple twisted strands and are globally symmetric. This paper considers the symmetric tangling of multiple 2-periodic honeycomb networks. We do this using a constructive methodology borrowing elements of graph theory, low-dimensional topology and geometry. The result is a wide-ranging enumeration of symmetric tangled honeycomb networks, providing a foundation for their exploration in both the chemistry lab and the geometers toolbox.}, language = {en} } @article{HydeEvans2022, author = {Hyde, Stephen T. and Evans, Myfanwy E.}, title = {Symmetric tangled Platonic polyhedra}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {119}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {1}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.2110345118}, pages = {10}, year = {2022}, abstract = {Conventional embeddings of the edge-graphs of Platonic polyhedra, {f,z}, where f,z denote the number of edges in each face and the edge-valence at each vertex, respectively, are untangled in that they can be placed on a sphere (S-2) such that distinct edges do not intersect, analogous to unknotted loops, which allow crossing-free drawings of S-1 on the sphere. The most symmetric (flag-transitive) realizations of those polyhedral graphs are those of the classical Platonic polyhedra, whose symmetries are *2fz, according to Conway's two-dimensional (2D) orbifold notation (equivalent to Schonflies symbols I-h, O-h, and T-d). Tangled Platonic {f,z} polyhedra-which cannot lie on the sphere without edge-crossings-are constructed as windings of helices with three, five, seven,... strands on multigenus surfaces formed by tubifying the edges of conventional Platonic polyhedra, have (chiral) symmetries 2fz (I, O, and T), whose vertices, edges, and faces are symmetrically identical, realized with two flags. The analysis extends to the "theta(z)" polyhedra, {2,z}. The vertices of these symmetric tangled polyhedra overlap with those of the Platonic polyhedra; however, their helicity requires curvilinear (or kinked) edges in all but one case. We show that these 2fz polyhedral tangles are maximally symmetric; more symmetric embeddings are necessarily untangled. On one hand, their topologies are very constrained: They are either self-entangled graphs (analogous to knots) or mutually catenated entangled compound polyhedra (analogous to links). On the other hand, an endless variety of entanglements can be realized for each topology. Simpler examples resemble patterns observed in synthetic organometallic materials and clathrin coats in vivo.}, language = {en} } @article{KolbeEvans2020, author = {Kolbe, Benedikt Maximilian and Evans, Myfanwy E.}, title = {Isotopic tiling theory for hyperbolic surfaces}, series = {Geometriae dedicata}, volume = {212}, journal = {Geometriae dedicata}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0046-5755}, doi = {10.1007/s10711-020-00554-2}, pages = {177 -- 204}, year = {2020}, abstract = {In this paper, we develop the mathematical tools needed to explore isotopy classes of tilings on hyperbolic surfaces of finite genus, possibly nonorientable, with boundary, and punctured. More specifically, we generalize results on Delaney-Dress combinatorial tiling theory using an extension of mapping class groups to orbifolds, in turn using this to study tilings of covering spaces of orbifolds. Moreover, we study finite subgroups of these mapping class groups. Our results can be used to extend the Delaney-Dress combinatorial encoding of a tiling to yield a finite symbol encoding the complexity of an isotopy class of tilings. The results of this paper provide the basis for a complete and unambiguous enumeration of isotopically distinct tilings of hyperbolic surfaces.}, language = {en} } @misc{KolbeEvans2020, author = {Kolbe, Benedikt Maximilian and Evans, Myfanwy E.}, title = {Isotopic tiling theory for hyperbolic surfaces}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-54428}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544285}, pages = {30}, year = {2020}, abstract = {In this paper, we develop the mathematical tools needed to explore isotopy classes of tilings on hyperbolic surfaces of finite genus, possibly nonorientable, with boundary, and punctured. More specifically, we generalize results on Delaney-Dress combinatorial tiling theory using an extension of mapping class groups to orbifolds, in turn using this to study tilings of covering spaces of orbifolds. Moreover, we study finite subgroups of these mapping class groups. Our results can be used to extend the Delaney-Dress combinatorial encoding of a tiling to yield a finite symbol encoding the complexity of an isotopy class of tilings. The results of this paper provide the basis for a complete and unambiguous enumeration of isotopically distinct tilings of hyperbolic surfaces.}, language = {en} } @article{KolbeEvans2022, author = {Kolbe, Benedikt Maximilian and Evans, Myfanwy E.}, title = {Enumerating isotopy classes of tilings guided by the symmetry of triply}, series = {Siam journal on applied algebra and geometry}, volume = {6}, journal = {Siam journal on applied algebra and geometry}, number = {1}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {2470-6566}, doi = {10.1137/20M1358943}, pages = {1 -- 40}, year = {2022}, abstract = {We present a technique for the enumeration of all isotopically distinct ways of tiling a hyperbolic surface of finite genus, possibly nonorientable and with punctures and boundary. This generalizes the enumeration using Delaney--Dress combinatorial tiling theory of combinatorial classes of tilings to isotopy classes of tilings. To accomplish this, we derive an action of the mapping class group of the orbifold associated to the symmetry group of a tiling on the set of tilings. We explicitly give descriptions and presentations of semipure mapping class groups and of tilings as decorations on orbifolds. We apply this enumerative result to generate an array of isotopically distinct tilings of the hyperbolic plane with symmetries generated by rotations that are commensurate with the threedimensional symmetries of the primitive, diamond, and gyroid triply periodic minimal surfaces, which have relevance to a variety of physical systems.}, language = {en} }