@article{BufeBurbankLiuetal.2017, author = {Bufe, Aaron and Burbank, Douglas W. and Liu, Langtao and Bookhagen, Bodo and Qin, Jintang and Chen, Jie and Li, Tao and Jobe, Jessica Ann Thompson and Yang, Huili}, title = {Variations of Lateral Bedrock Erosion Rates Control Planation of Uplifting Folds in the Foreland of the Tian Shan, NW China}, series = {Journal of geophysical research : Earth surface}, volume = {122}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2016JF004099}, pages = {2431 -- 2467}, year = {2017}, abstract = {Fluvial planation surfaces, such as straths, commonly serve as recorders of climatic and tectonic changes and are formed by the lateral erosion of rivers, a process that remains poorly understood. Here we present a study of kilometer-wide, fluvially eroded, low-relief surfaces on rapidly uplifting folds in the foreland of the southwestern Tian Shan. A combination of field work, digital elevation model analysis, and dating of fluvial deposits reveals that despite an arid climate and rapid average rock-uplift rates of 1-3mm/yr, rivers cut extensive (>1-2km wide) surfaces with typical height variations of <6m over periods of >2-6kyr. The extent of this beveling varies in space and time, such that different beveling episodes affect individual structures. Between times of planation, beveled surfaces are abandoned, incised, and deformed across the folds. In a challenge to models that link strath cutting and abandonment primarily to changes in river incision rates, we demonstrate that lateral erosion rates of antecedent streams crossing the folds have to vary by more than 1 order of magnitude to explain the creation of beveled platforms in the past and their incision at the present day. These variations do not appear to covary with climate variability and might be caused by relatively small (much less than an order of magnitude) changes in sediment or water fluxes. It remains uncertain in which settings variations in lateral bedrock erosion rates predominate over changes in vertical erosion rates. Therefore, when studying fluvial planation and strath terraces, variability of both lateral and vertical erosion rates should be considered.}, language = {en} } @article{VossBookhagenSachseetal.2020, author = {Voss, Katalyn A. and Bookhagen, Bodo and Sachse, Dirk and Chadwick, Oliver A.}, title = {Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal}, series = {Journal of hydrology}, volume = {586}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2020.124802}, pages = {17}, year = {2020}, abstract = {The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater.}, language = {en} } @article{PurintonBookhagen2017, author = {Purinton, Benjamin and Bookhagen, Bodo}, title = {Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau}, series = {Earth surface dynamics}, volume = {5}, journal = {Earth surface dynamics}, number = {2}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2196-632X}, doi = {10.5194/esurf-5-211-2017}, pages = {211 -- 237}, year = {2017}, abstract = {In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000m of elevation. For the 30m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12m TanDEM-X and 5m ALOSWorld 3D having < 2m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12-30 m), and ALOS World 3D (5-30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10m DEMs and the 30m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30m SRTM-C, 12-30m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X, and 5m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m=n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5m ALOS World 3D DEM, which demonstrated high-frequency noise in 2-8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e.g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis.}, language = {en} } @article{PurintonBookhagen2017, author = {Purinton, Benjamin and Bookhagen, Bodo}, title = {Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau}, series = {Earth surface dynamics}, volume = {5}, journal = {Earth surface dynamics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-5-211-2017}, pages = {211 -- 237}, year = {2017}, abstract = {In this study, we validate and compare elevation accuracy and geomorphic metrics of satellite-derived digital elevation models (DEMs) on the southern Central Andean Plateau. The plateau has an average elevation of 3.7 km and is characterized by diverse topography and relief, lack of vegetation, and clear skies that create ideal conditions for remote sensing. At 30m resolution, SRTM-C, ASTER GDEM2, stacked ASTER L1A stereopair DEM, ALOS World 3D, and TanDEM-X have been analyzed. The higher-resolution datasets include 12m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X DEMs, and 5m ALOS World 3D. These DEMs are state of the art for optical (ASTER and ALOS) and radar (SRTM-C and TanDEM-X) spaceborne sensors. We assessed vertical accuracy by comparing standard deviations of the DEM elevation versus 307 509 differential GPS measurements across 4000m of elevation. For the 30m DEMs, the ASTER datasets had the highest vertical standard deviation at > 6.5 m, whereas the SRTM-C, ALOS World 3D, and TanDEM-X were all < 3.5 m. Higher-resolution DEMs generally had lower uncertainty, with both the 12m TanDEM-X and 5m ALOSWorld 3D having < 2m vertical standard deviation. Analysis of vertical uncertainty with respect to terrain elevation, slope, and aspect revealed the low uncertainty across these attributes for SRTM-C (30 m), TanDEM-X (12-30 m), and ALOS World 3D (5-30 m). Single-CoSSC TerraSAR-X/TanDEM-X 10m DEMs and the 30m ASTER GDEM2 displayed slight aspect biases, which were removed in their stacked counterparts (TanDEM-X and ASTER Stack). Based on low vertical standard deviations and visual inspection alongside optical satellite data, we selected the 30m SRTM-C, 12-30m TanDEM-X, 10m single-CoSSC TerraSAR-X/TanDEM-X, and 5m ALOS World 3D for geomorphic metric comparison in a 66 km2 catchment with a distinct river knickpoint. Consistent m = n values were found using chi plot channel profile analysis, regardless of DEM type and spatial resolution. Slope, curvature, and drainage area were calculated and plotting schemes were used to assess basin-wide differences in the hillslope-to-valley transition related to the knickpoint. While slope and hillslope length measurements vary little between datasets, curvature displays higher magnitude measurements with fining resolution. This is especially true for the optical 5m ALOS World 3D DEM, which demonstrated high-frequency noise in 2-8 pixel steps through a Fourier frequency analysis. The improvements in accurate space-radar DEMs (e. g., TanDEM-X) for geomorphometry are promising, but airborne or terrestrial data are still necessary for meter-scale analysis.}, language = {en} } @article{BookhagenEchtlerMelnicketal.2006, author = {Bookhagen, Bodo and Echtler, Helmut Peter and Melnick, Daniel and Strecker, Manfred and Spencer, Joel Q. G.}, title = {Using uplifted Holocene beach berms for paleoseismic analysis on the Santa Maria Island, south-central Chile}, issn = {0094-8276}, doi = {10.1029/2006gl026734}, year = {2006}, abstract = {Major earthquakes ( M > 8) have repeatedly ruptured the Nazca-South America plate interface of south-central Chile involving meter scale land-level changes. Earthquake recurrence intervals, however, extending beyond limited historical records are virtually unknown, but would provide crucial data on the tectonic behavior of forearcs. We analyzed the spatiotemporal pattern of Holocene earthquakes on Santa Maria Island (SMI; 37 degrees S), located 20 km off the Chilean coast and approximately 70 km east of the trench. SMI hosts a minimum of 21 uplifted beach berms, of which a subset were dated to calculate a mean uplift rate of 2.3 +/- 0.2 m/ky and a tilting rate of 0.022 +/- 0.002 degrees/ky. The inferred recurrence interval of strandline-forming earthquakes is similar to 180 years. Combining coseismic uplift and aseismic subsidence during an earthquake cycle, the net gain in strandline elevation in this environment is similar to 0.4 m per event}, language = {en} } @article{RamezaniZiaraniBookhagenSchmidtetal.2019, author = {Ramezani Ziarani, Maryam and Bookhagen, Bodo and Schmidt, Torsten and Wickert, Jens and de la Torre, Alejandro and Hierro, Rodrigo}, title = {Using Convective Available Potential Energy (CAPE) and Dew-Point Temperature to Characterize Rainfall-Extreme Events in the South-Central Andes}, series = {Atmosphere}, volume = {10}, journal = {Atmosphere}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2073-4433}, doi = {10.3390/atmos10070379}, pages = {22}, year = {2019}, abstract = {The interactions between atmosphere and steep topography in the eastern south-central Andes result in complex relations with inhomogenous rainfall distributions. The atmospheric conditions leading to deep convection and extreme rainfall and their spatial patterns—both at the valley and mountain-belt scales—are not well understood. In this study, we aim to identify the dominant atmospheric conditions and their spatial variability by analyzing the convective available potential energy (CAPE) and dew-point temperature (Td). We explain the crucial effect of temperature on extreme rainfall generation along the steep climatic and topographic gradients in the NW Argentine Andes stretching from the low-elevation eastern foreland to the high-elevation central Andean Plateau in the west. Our analysis relies on version 2.0 of the ECMWF's (European Centre for Medium-RangeWeather Forecasts) Re-Analysis (ERA-interim) data and TRMM (Tropical Rainfall Measuring Mission) data. We make the following key observations: First, we observe distinctive gradients along and across strike of the Andes in dew-point temperature and CAPE that both control rainfall distributions. Second, we identify a nonlinear correlation between rainfall and a combination of dew-point temperature and CAPE through a multivariable regression analysis. The correlation changes in space along the climatic and topographic gradients and helps to explain controlling factors for extreme-rainfall generation. Third, we observe more contribution (or higher importance) of Td in the tropical low-elevation foreland and intermediate-elevation areas as compared to the high-elevation central Andean Plateau for 90th percentile rainfall. In contrast, we observe a higher contribution of CAPE in the intermediate-elevation area between low and high elevation, especially in the transition zone between the tropical and subtropical areas for the 90th percentile rainfall. Fourth, we find that the parameters of the multivariable regression using CAPE and Td can explain rainfall with higher statistical significance for the 90th percentile compared to lower rainfall percentiles. Based on our results, the spatial pattern of rainfall-extreme events during the past ∼16 years can be described by a combination of dew-point temperature and CAPE in the south-central Andes.}, language = {en} } @article{OlenBookhagenHoffmannetal.2015, author = {Olen, Stephanie M. and Bookhagen, Bodo and Hoffmann, Bernd and Sachse, Dirk and Adhikari, Danda P. and Strecker, Manfred}, title = {Understanding erosion rates in the Himalayan orogen: A case study from the Arun Valley}, series = {Journal of geophysical research : Earth surface}, volume = {120}, journal = {Journal of geophysical research : Earth surface}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2014JF003410}, pages = {2080 -- 2102}, year = {2015}, abstract = {Understanding the rates and pattern of erosion is a key aspect of deciphering the impacts of climate and tectonics on landscape evolution. Denudation rates derived from terrestrial cosmogenic nuclides (TCNs) are commonly used to quantify erosion and bridge tectonic (Myr) and climatic (up to several kiloyears) time scales. However, how the processes of erosion in active orogens are ultimately reflected in Be-10 TCN samples remains a topic of discussion. We investigate this problem in the Arun Valley of eastern Nepal with 34 new Be-10-derived catchment-mean denudation rates. The Arun Valley is characterized by steep north-south gradients in topography and climate. Locally, denudation rates increase northward, from <0.2mmyr(-1) to similar to 1.5mmyr(-1) in tributary samples, while main stem samples appear to increase downstream from similar to 0.2mmyr(-1) at the border with Tibet to 0.91mmyr(-1) in the foreland. Denudation rates most strongly correlate with normalized channel steepness (R-2=0.67), which has been commonly interpreted to indicate tectonic activity. Significant downstream decrease of Be-10 concentration in the main stem Arun suggests that upstream sediment grains are fining to the point that they are operationally excluded from the processed sample. This results in Be-10 concentrations and denudation rates that do not uniformly represent the upstream catchment area. We observe strong impacts on Be-10 concentrations from local, nonfluvial geomorphic processes, such as glaciation and landsliding coinciding with areas of peak rainfall rates, pointing toward climatic modulation of predominantly tectonically driven denudation rates.}, language = {en} } @article{PurintonBookhagen2021, author = {Purinton, Benjamin and Bookhagen, Bodo}, title = {Tracking downstream variability in large grain-size distributions in the South-Central Andes}, series = {Journal of geophysical research : F, Earth surface}, volume = {126}, journal = {Journal of geophysical research : F, Earth surface}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2021JF006260}, pages = {1 -- 29}, year = {2021}, abstract = {Mixed sand- and gravel-bed rivers record erosion, transport, and fining signals in their bedload size distributions. Thus, grain-size data are imperative for studying these processes. However, collecting hundreds to thousands of pebble measurements in steep and dynamic high-mountain river settings remains challenging. Using the recently published digital grain-sizing algorithm PebbleCounts, we were able to survey seven large (>= 1,000 m2) channel cross-sections and measure thousands to tens-of-thousands of grains per survey along a 100-km stretch of the trunk stream of the Toro Basin in Northwest Argentina. The study region traverses a steep topographic and environmental gradient on the eastern margin of the Central Andean Plateau. Careful counting and validation allows us to identify measurement errors and constrain percentile uncertainties using large sample sizes. In the coarse >= 2.5 cm fraction of bedload, only the uppermost size percentiles (>= 95th) vary significantly downstream, whereas the 50th and 84th percentiles show less variability. We note a relation between increases in these upper percentiles and along-channel junctions with large, steep tributaries. This signal is strongly influenced by lithology and geologic structures, and mixed with local hillslope input. In steep catchments like the Toro Basin, we suggest nonlinear relationships between geomorphic metrics and grain size, whereby the steepest parts of the landscape exert primary control on the upper grain-size percentiles. Thus, average or median metrics that do not apply weights or thresholds to steeper topography may be less predictive of grain-size distributions in such settings.}, language = {en} } @article{StolbovaMartinBookhagenetal.2014, author = {Stolbova, Veronika and Martin, P. and Bookhagen, Bodo and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Topology and seasonal evolution of the network of extreme precipitation over the Indian subcontinent and Sri Lanka}, series = {Nonlinear processes in geophysics}, volume = {21}, journal = {Nonlinear processes in geophysics}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-21-901-2014}, pages = {901 -- 917}, year = {2014}, abstract = {This paper employs a complex network approach to determine the topology and evolution of the network of extreme precipitation that governs the organization of extreme rainfall before, during, and after the Indian Summer Monsoon (ISM) season. We construct networks of extreme rainfall events during the ISM (June-September), post-monsoon (October-December), and pre-monsoon (March-May) periods from satellite-derived (Tropical Rainfall Measurement Mission, TRMM) and rain-gauge interpolated (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE) data sets. The structure of the networks is determined by the level of synchronization of extreme rainfall events between different grid cells throughout the Indian subcontinent. Through the analysis of various complex-network metrics, we describe typical repetitive patterns in North Pakistan (NP), the Eastern Ghats (EG), and the Tibetan Plateau (TP). These patterns appear during the pre-monsoon season, evolve during the ISM, and disappear during the post-monsoon season. These are important meteorological features that need further attention and that may be useful in ISM timing and strength prediction.}, language = {en} } @article{SmithRheinwaltBookhagen2021, author = {Smith, Taylor and Rheinwalt, Aljoscha and Bookhagen, Bodo}, title = {Topography and climate in the upper Indus Basin}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {786}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2021.147363}, pages = {11}, year = {2021}, abstract = {The Upper Indus Basin (UIB), which covers a wide range of climatic and topographic settings, provides an ideal venue to explore the relationship between climate and topography. While the distribution of snow and glaciers is spatially and temporally heterogeneous, there exist regions with similar elevation-snow relationships. In this work, we construct elevation-binned snow-cover statistics to analyze 3415 watersheds and 7357 glaciers in the UIB region. We group both glaciers and watersheds using a hierarchical clustering approach and find that (1) watershed clusters mirror large-scale moisture transport patterns and (2) are highly dependent on median watershed elevation. (3) Glacier clusters are spatially heterogeneous and are less strongly controlled by elevation, but rather by local topographic parameters that modify solar insolation. Our clustering approach allows us to clearly define self-similar snow-topographic regions. Eastern watersheds in the UIB show a steep snow cover-elevation relationship whereas watersheds in the central and western UIB have moderately sloped relationships, but cluster in distinct groups. We highlight this snow-cover-topographic transition zone and argue that these watersheds have different hydrologic responses than other regions. Our hierarchical clustering approach provides a potential new framework to use in defining climatic zones in the cyrosphere based on empirical data.}, language = {en} } @article{StolbovaSurovyatkinaBookhagenetal.2016, author = {Stolbova, Veronika and Surovyatkina, Elena and Bookhagen, Bodo and Kurths, J{\"u}rgen}, title = {Tipping elements of the Indian monsoon: Prediction of onset and withdrawal}, series = {Geophysical research letters}, volume = {43}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL068392}, pages = {3982 -- 3990}, year = {2016}, abstract = {Forecasting the onset and withdrawal of the Indian summer monsoon is crucial for the life and prosperity of more than one billion inhabitants of the Indian subcontinent. However, accurate prediction of monsoon timing remains a challenge, despite numerous efforts. Here we present a method for prediction of monsoon timing based on a critical transition precursor. We identify geographic regions-tipping elements of the monsoon-and use them as observation locations for predicting onset and withdrawal dates. Unlike most predictability methods, our approach does not rely on precipitation analysis but on air temperature and relative humidity, which are well represented both in models and observations. The proposed method allows to predict onset 2 weeks earlier and withdrawal dates 1.5 months earlier than existing methods. In addition, it enables to correctly forecast monsoon duration for some anomalous years, often associated with El Nino-Southern Oscillation.}, language = {en} } @article{NorrisCarvalhoJonesetal.2017, author = {Norris, Jesse and Carvalho, Leila M. V. and Jones, Charles and Cannon, Forest and Bookhagen, Bodo and Palazzi, Elisa and Tahir, Adnan Ahmad}, title = {The spatiotemporal variability of precipitation over the Himalaya: evaluation of one-year WRF model simulation}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {49}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-016-3414-y}, pages = {2179 -- 2204}, year = {2017}, abstract = {The Weather Research and Forecasting (WRF) model is used to simulate the spatiotemporal distribution of precipitation over central Asia over the year April 2005 through March 2006. Experiments are performed at 6.7 km horizontal grid spacing, with an emphasis on winter and summer precipitation over the Himalaya. The model and the Tropical Rainfall Measuring Mission show a similar inter-seasonal cycle of precipitation, from extratropical cyclones to monsoon precipitation, with agreement also in the diurnal cycle of monsoon precipitation. In winter months, WRF compares better in timeseries of daily precipitation to stations below than above 3-km elevation, likely due to inferior measurement of snow than rain by the stations, highlighting the need for reliable snowfall measurements at high elevations in winter. In summer months, the nocturnal precipitation cycle in the foothills and valleys of the Himalaya is captured by this 6.7-km WRF simulation, while coarser simulations with convective parameterization show near zero nocturnal precipitation. In winter months, higher resolution is less important, serving only to slightly increase precipitation magnitudes due to steeper slopes. However, even in the 6.7-km simulation, afternoon precipitation is overestimated at high elevations, which can be reduced by even higher-resolution (2.2-km) simulations. These results indicate that WRF provides skillful simulations of precipitation relevant for studies of water resources over the complex terrain in the Himalaya.}, language = {en} } @article{RegmiBookhagen2022, author = {Regmi, Shakil and Bookhagen, Bodo}, title = {The spatial pattern of extreme precipitation from 40 years of gauge data in the central Himalaya}, series = {Weather and climate extremes}, volume = {37}, journal = {Weather and climate extremes}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-0947}, doi = {10.1016/j.wace.2022.100470}, pages = {14}, year = {2022}, abstract = {The topography of the Himalaya exerts a substantial control on the spatial distribution of monsoonal rainfall, which is a vital water source for the regional economy and population. But the occurrence of short-lived and high-intensity precipitation results in socio-economic losses. This study relies on 40 years of daily data from 204 ground stations in Nepal to derive extreme precipitation thresholds, amounts, and days at the 95th percentile. We additionally determine the precipitation magnitude-frequency relation. We observe that extreme precipitation amounts follow an almost uniform band parallel to topographic contour lines in the southern Himalaya mountains in central and eastern Nepal but not in western Nepal. The relationship of extreme precipitation indices with topographic relief shows that extreme precipitation thresholds decrease with increasing elevation, but extreme precipitation days increase in higher elevation areas. Furthermore, stations above 1 km elevation exhibit a power-law relation in the rainfall magnitude-frequency framework. Stations at higher elevations generally have lower values of power-law exponents than low elevation areas. This suggests a fundamentally different behaviour of the rainfall distribution and an increased occurrence of extreme rainfall storms in the high elevation areas of Nepal.}, language = {en} } @article{HartmanBookhagenChadwick2016, author = {Hartman, Brett D. and Bookhagen, Bodo and Chadwick, Oliver A.}, title = {The effects of check dams and other erosion control structures on the restoration of Andean bofedal ecosystems}, series = {Restoration Ecology}, volume = {24}, journal = {Restoration Ecology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1061-2971}, doi = {10.1111/rec.12402}, pages = {761 -- 772}, year = {2016}, abstract = {Restoring degraded lands in rural environments that are heavily managed to meet subsistence needs is a challenge due to high rates of disturbance and resource extraction. This study investigates the efficacy of erosion control structures (ECSs) as restoration tools in the context of a watershed rehabilitation and wet meadow (bofedal) restoration program in the Bolivian Andes. In an effort to enhance water security and increase grazing stability, Aymara indigenous communities built over 15,000 check dams, 9,100 terraces, 5,300 infiltration ditches, and 35 pasture improvement trials. Communities built ECSs at different rates, and we compared vegetation change in the highest restoration management intensity, lowest restoration management intensity, and nonproject control communities. We used line transects to measure changes in vegetation cover and standing water in gullies with check dams and without check dams, and related these ground measurements to a time series (1986-2009) of normalized difference vegetation index derived from Landsat TM5 images. Evidence suggests that check dams increase bofedal vegetation and standing water at a local scale, and lead to increased greenness at a basin scale when combined with other ECSs. Watershed rehabilitation enhances ecosystem services significant to local communities (grazing stability, water security), which creates important synergies when conducting land restoration in rural development settings.}, language = {en} } @article{MeeseBookhagenOlenetal.2018, author = {Meese, Bernd and Bookhagen, Bodo and Olen, Stephanie M. and Barthold, Frauke Katrin and Sachse, Dirk}, title = {The effect of Indian Summer Monsoon rainfall on surface water delta D values in the central Himalaya}, series = {Hydrological processes}, volume = {32}, journal = {Hydrological processes}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.13281}, pages = {3662 -- 3674}, year = {2018}, abstract = {Stable isotope proxy records, such as speleothems, plant-wax biomarker records, and ice cores, are suitable archives for the reconstruction of regional palaeohydrologic conditions. But the interpretation of these records in the tropics, especially in the Indian Summer Monsoon (ISM) domain, is difficult due to differing moisture and water sources: precipitation from the ISM and Winter Westerlies, as well as snow- and glacial meltwater. In this study, we use interannual differences in ISM strength (2011-2012) to understand the stable isotopic composition of surface water in the Arun River catchment in eastern Nepal. We sampled main stem and tributary water (n = 204) for stable hydrogen and oxygen isotope analysis in the postmonsoon phase of two subsequent years with significantly distinct ISM intensities. In addition to the 2011/2012 sampling campaigns, we collected a 12-month time series of main stem waters (2012/2013, n = 105) in order to better quantify seasonal effects on the variability of surface water delta O-18/delta D. Furthermore, remotely sensed satellite data of rainfall, snow cover, glacial coverage, and evapotranspiration was evaluated. The comparison of datasets from both years revealed that surface waters of the main stem Arun and its tributaries were D-enriched by similar to 15 parts per thousand when ISM rainfall decreased by 20\%. This strong response emphasizes the importance of the ISM for surface water run-off in the central Himalaya. However, further spatio-temporal analysis of remote sensing data in combination with stream water d-excess revealed that most high-altitude tributaries and the Tibetan part of the Arun receive high portions of glacial melt water and likely Winter Westerly Disturbances precipitation. We make the following two implications: First, palaeohydrologic archives found in high-altitude tributaries and on the southern Tibetan Plateau record a mixture of past precipitation delta D values and variable amounts of additional water sources. Second, surface water isotope ratios of lower elevated tributaries strongly reflect the isotopic composition of ISM rainfall implying a suitable region for the analysis of potential delta D value proxy records.}, language = {en} } @article{BufeBekaertHussainetal.2017, author = {Bufe, Aaron and Bekaert, David P. S. and Hussain, Ekbal and Bookhagen, Bodo and Burbank, Douglas W. and Jobe, Jessica Ann Thompson and Chen, Jie and Li, Tao and Liu, Langtao and Gan, Weijun}, title = {Temporal changes in rock uplift rates of folds in the foreland of the Tian Shan and the Pamir from geodetic and geologic data}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2017GL073627}, pages = {10977 -- 10987}, year = {2017}, abstract = {Understanding the evolution of continental deformation zones relies on quantifying spatial and temporal changes in deformation rates of tectonic structures. Along the eastern boundary of the Pamir-Tian Shan collision zone, we constrain secular variations of rock uplift rates for a series of five Quaternary detachment- and fault-related folds from their initiation to the modern day. When combined with GPS data, decomposition of interferometric synthetic aperture radar time series constrains the spatial pattern of surface and rock uplift on the folds deforming at decadal rates of 1-5mm/yr. These data confirm the previously proposed basinward propagation of structures during the Quaternary. By fitting our geodetic rates and previously published geologic uplift rates with piecewise linear functions, we find that gradual rate changes over >100kyr can explain the interferometric synthetic aperture radar observations where changes in average uplift rates are greater than similar to 1 mm/yr among different time intervals (similar to 10(1), 10(4-5), and 10(5-6) years).}, language = {en} } @article{AlonsoBookhagenCarrapaetal.2006, author = {Alonso, Ricardo N. and Bookhagen, Bodo and Carrapa, Barbara and Coutand, Isabelle and Haschke, Michael and Hilley, George E. and Schoenbohm, Lindsay M. and Sobel, Edward and Strecker, Manfred and Trauth, Martin H. and Villanueva, Arturo}, title = {Tectonics, climate and landscape evolution of the Southern Central Andes : the Argentine Puna Plateau and adjacent regions between 22 and 30°S}, isbn = {978-3-540- 24329-8}, year = {2006}, language = {en} } @article{YildirimSchildgenEchtleretal.2013, author = {Yildirim, Cengiz and Schildgen, Taylor F. and Echtler, Helmut Peter and Melnick, Daniel and Bookhagen, Bodo and Ciner, T. Attila and Niedermann, Samuel and Merchel, Silke and Martschini, Martin and Steier, Peter and Strecker, Manfred}, title = {Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20066}, pages = {1107 -- 1120}, year = {2013}, abstract = {We document Quaternary fluvial incision driven by fault-controlled surface deformation in the inverted intermontane G{\"o}kirmak Basin in the Central Pontide mountains along the northern margin of the Central Anatolian Plateau. In-situ-produced Be-10, Ne-21, and Cl-36 concentrations from gravel-covered fluvial terraces and pediment surfaces along the trunk stream of the basin (the G{\"o}kirmak River) yield model exposure ages ranging from 71ka to 34645ka and average fluvial incision rates over the past similar to 350ka of 0.280.01mm a(-1). Similarities between river incision rates and coastal uplift rates at the Black Sea coast suggest that regional uplift is responsible for the river incision. Model exposure ages of deformed pediment surfaces along tributaries of the trunk stream range from 605ka to 110 +/- 10ka, demonstrating that the thrust faults responsible for pediment deformation were active after those times and were likely active earlier as well as explaining the topographic relief of the region. Together, our data demonstrate cumulative incision that is linked to active internal shortening and uplift of similar to 0.3mm a(-1) in the Central Pontide orogenic wedge, which may ultimately contribute to the lateral growth of the northern Anatolian Plateau.}, language = {en} } @article{ScherlerBookhagenStrecker2014, author = {Scherler, Dirk and Bookhagen, Bodo and Strecker, Manfred}, title = {Tectonic control on Be-10-derived erosion rates in the Garhwal Himalaya, India}, series = {Journal of geophysical research : Earth surface}, volume = {119}, journal = {Journal of geophysical research : Earth surface}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2013JF002955}, pages = {83 -- 105}, year = {2014}, abstract = {Erosion in the Himalaya is responsible for one of the greatest mass redistributions on Earth and has fueled models of feedback loops between climate and tectonics. Although the general trends of erosion across the Himalaya are reasonably well known, the relative importance of factors controlling erosion is less well constrained. Here we present 25 Be-10-derived catchment-averaged erosion rates from the Yamuna catchment in the Garhwal Himalaya, northern India. Tributary erosion rates range between similar to 0.1 and 0.5mmyr(-1) in the Lesser Himalaya and similar to 1 and 2mmyr(-1) in the High Himalaya, despite uniform hillslope angles. The erosion-rate data correlate with catchment-averaged values of 5 km radius relief, channel steepness indices, and specific stream power but to varying degrees of nonlinearity. Similar nonlinear relationships and coefficients of determination suggest that topographic steepness is the major control on the spatial variability of erosion and that twofold to threefold differences in annual runoff are of minor importance in this area. Instead, the spatial distribution of erosion in the study area is consistent with a tectonic model in which the rock uplift pattern is largely controlled by the shortening rate and the geometry of the Main Himalayan Thrust fault (MHT). Our data support a shallow dip of the MHT underneath the Lesser Himalaya, followed by a midcrustal ramp underneath the High Himalaya, as indicated by geophysical data. Finally, analysis of sample results from larger main stem rivers indicates significant variability of Be-10-derived erosion rates, possibly related to nonproportional sediment supply from different tributaries and incomplete mixing in main stem channels.}, language = {en} } @article{BookhagenStrecker2012, author = {Bookhagen, Bodo and Strecker, Manfred}, title = {Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes}, series = {Earth \& planetary science letters}, volume = {327}, journal = {Earth \& planetary science letters}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.02.005}, pages = {97 -- 110}, year = {2012}, abstract = {The tectonic and climatic boundary conditions of the broken foreland and the orogen interior of the southern Central Andes of northwestern Argentina cause strong contrasts in elevation, rainfall, and surface-process regimes. The climatic gradient in this region ranges from the wet, windward eastern flanks (similar to 2 m/yr rainfall) to progressively drier western basins and ranges (similar to 0.1 m/yr) bordering the arid Altiplano-Puna Plateau. In this study, we analyze the impact of spatiotemporal climatic gradients on surface erosion: First, we present 41 new catchment-mean erosion rates derived from cosmogenic nuclide inventories to document spatial erosion patterns. Second, we re-evaluate paleoclimatic records from the Calchaquies basin (66 W, 26 S), a large intermontane basin bordered by high (> 4.5 km) mountain ranges, to demonstrate temporal variations in erosion rates associated with changing climatic boundary conditions during the late Pleistocene and Holocene. Three key observations in this region emphasize the importance of climatic parameters on the efficiency of surface processes in space and time: (1) First-order spatial patterns of erosion rates can be explained by a simple specific stream power (SSP) approach. We explicitly account for discharge by routing high-resolution, satellite derived rainfall. This is important as the steep climatic gradient results in a highly non-linear relation between drainage area and discharge. This relation indicates that erosion rates (ER) scale with ER similar to SSP1.4 on cosmogenic-nuclide time scales. (2) We identify an intrinsic channel-slope behavior in different climatic compartments. Channel slopes in dry areas (< 0.25 m/yr rainfall) are slightly steeper than in wet areas (> 0.75 m/yr) with equal drainage areas, thus compensating lower amounts of discharge with steeper slopes. (3) Erosion rates can vary by an order of magnitude between presently dry (similar to 0.05 mm/yr) and well-defined late Pleistocene humid (similar to 0.5 mm/yr) conditions within an intemontane basin. Overall, we document a strong climatic impact on erosion rates and channel slopes. We suggest that rainfall reaching areas with steeper channel slopes in the orogen interior during wetter climate periods results in intensified sediment mass transport, which is primarily responsible for maintaining the balance between surface uplift, erosion, sediment routing and transient storage in the orogen.}, language = {en} }