@article{MiklashevskyLindemannFischer2021, author = {Miklashevsky, Alex and Lindemann, Oliver and Fischer, Martin H.}, title = {The force of numbers}, series = {Frontiers in human neuroscience / Frontiers Research Foundation}, volume = {14}, journal = {Frontiers in human neuroscience / Frontiers Research Foundation}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.590508}, pages = {16}, year = {2021}, abstract = {The study has two objectives: (1) to introduce grip force recording as a new technique for studying embodied numerical processing; and (2) to demonstrate how three competing accounts of numerical magnitude representation can be tested by using this new technique: the Mental Number Line (MNL), A Theory of Magnitude (ATOM) and Embodied Cognition (finger counting-based) account. While 26 healthy adults processed visually presented single digits in a go/no-go n-back paradigm, their passive holding forces for two small sensors were recorded in both hands. Spontaneous and unconscious grip force changes related to number magnitude occurred in the left hand already 100-140 ms after stimulus presentation and continued systematically. Our results support a two-step model of number processing where an initial stage is related to the automatic activation of all stimulus properties whereas a later stage consists of deeper conscious processing of the stimulus. This interpretation generalizes previous work with linguistic stimuli and elaborates the timeline of embodied cognition. We hope that the use of grip force recording will advance the field of numerical cognition research.}, language = {en} } @article{MiklashevskyFischerLindemann2022, author = {Miklashevsky, Alex and Fischer, Martin H. and Lindemann, Oliver}, title = {Spatial-numerical associations without a motor response? Grip force says 'Yes'}, series = {Acta Psychologica}, volume = {231}, journal = {Acta Psychologica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6297}, doi = {10.1016/j.actpsy.2022.103791}, pages = {1 -- 17}, year = {2022}, abstract = {In numerical processing, the functional role of Spatial-Numerical Associations (SNAs, such as the association of smaller numbers with left space and larger numbers with right space, the Mental Number Line hypothesis) is debated. Most studies demonstrate SNAs with lateralized responses, and there is little evidence that SNAs appear when no response is required. We recorded passive holding grip forces in no-go trials during number processing. In Experiment 1, participants performed a surface numerical decision task ("Is it a number or a letter?"). In Experiment 2, we used a deeper semantic task ("Is this number larger or smaller than five?"). Despite instruction to keep their grip force constant, participants' spontaneous grip force changed in both experiments: Smaller numbers led to larger force increase in the left than in the right hand in the numerical decision task (500-700 ms after stimulus onset). In the semantic task, smaller numbers again led to larger force increase in the left hand, and larger numbers increased the right-hand holding force. This effect appeared earlier (180 ms) and lasted longer (until 580 ms after stimulus onset). This is the first demonstration of SNAs with passive holding force. Our result suggests that (1) explicit motor response is not a prerequisite for SNAs to appear, and (2) the timing and strength of SNAs are task-dependent. (216 words).}, language = {en} } @article{KuehneNenaschewMiklashevsky2022, author = {K{\"u}hne, Katharina and Nenaschew, Kristina and Miklashevsky, Alex}, title = {Space-valence mapping of social concepts}, series = {Frontiers in Psychology}, volume = {13}, journal = {Frontiers in Psychology}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2022.1070177}, pages = {13}, year = {2022}, abstract = {Introduction: The body-specificity hypothesis states that in right-handers, positive concepts should be associated with the right side and negative concepts with the left side of the body. Following this hypothesis, our study postulated that negative out-group ethnic stereotypes would be associated with the left side, and positive in-group stereotypes would be associated with the right side. Methods: The experiment consisted of two parts. First, we measured the spatial mapping of ethnic stereotypes by using a sensibility judgment task, in which participants had to decide whether a sentence was sensible or not by pressing either a left or a right key. The sentences included German vs. Arabic proper names. Second, we measured implicit ethnic stereotypes in the same participants using the Go/No-go Association Task (GNAT), in which Arabic vs. German proper names were presented in combination with positive vs. negative adjectives. Right-handed German native speakers (Nā€‰=ā€‰92) participated in an online study. Results: As predicted, in the GNAT, participants reacted faster to German names combined with positive adjectives and to Arabic names combined with negative adjectives, which is diagnostic of existing valenced in-and outgroup ethnic stereotypes. However, we failed to find any reliable effects in the sensibility judgment task, i.e., there was no evidence of spatial mapping of positive and negative ethnic stereotypes. There was no correlation between the results of the two tasks at the individual level. Further Bayesian analysis and exploratory analysis in the left-handed subsample (Nā€‰=ā€‰9) corroborated the evidence in favor of null results. Discussion: Our study suggests that ethnic stereotypes are not automatically mapped in a body-specific manner.}, language = {en} } @article{WiepkeMiklashevsky2021, author = {Wiepke, Axel P. and Miklashevsky, Alex}, title = {Imaginary Worlds and Their Borders: An Opinion Article}, series = {Frontiers Media SA}, volume = {12}, journal = {Frontiers Media SA}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.793764}, pages = {1 -- 2}, year = {2021}, language = {en} } @article{Miklashevsky2022, author = {Miklashevsky, Alex}, title = {Catch the star! Spatial information activates the manual motor system}, series = {PLoS ONE}, journal = {PLoS ONE}, publisher = {PLOS}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0262510}, pages = {1 -- 30}, year = {2022}, abstract = {Previous research demonstrated a close bidirectional relationship between spatial attention and the manual motor system. However, it is unclear whether an explicit hand movement is necessary for this relationship to appear. A novel method with high temporal resolution-bimanual grip force registration-sheds light on this issue. Participants held two grip force sensors while being presented with lateralized stimuli (exogenous attentional shifts, Experiment 1), left- or right-pointing central arrows (endogenous attentional shifts, Experiment 2), or the words "left" or "right" (endogenous attentional shifts, Experiment 3). There was an early interaction between the presentation side or arrow direction and grip force: lateralized objects and central arrows led to a larger increase of the ipsilateral force and a smaller increase of the contralateral force. Surprisingly, words led to the opposite pattern: larger force increase in the contralateral hand and smaller force increase in the ipsilateral hand. The effect was stronger and appeared earlier for lateralized objects (60 ms after stimulus presentation) than for arrows (100 ms) or words (250 ms). Thus, processing visuospatial information automatically activates the manual motor system, but the timing and direction of this effect vary depending on the type of stimulus.}, language = {en} }