@article{HossainChakrabortyRanaetal.2020, author = {Hossain, Mohammad Delwar and Chakraborty, Chanchal and Rana, Utpal and Mondal, Sanjoy and Holdt, Hans-J{\"u}rgen and Higuchi, Masayoshi}, title = {Green-to-black electrochromic copper(I)-based metallo-supramolecular polymer with a perpendicularly twisted structure}, series = {ACS applied polymer materials}, volume = {2}, journal = {ACS applied polymer materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {2637-6105}, doi = {10.1021/acsapm.0c00559}, pages = {4449 -- 4454}, year = {2020}, abstract = {A Cu(I)-based metallo-supramolecular polymer with a perpendicularly twisted structure was synthesized by a 1:1 complexation of tetrakis(acetonitrile)copper(I) triflate with the pi-conjugated dibenzoeilatin ligand. Stepwise complexation behavior of Cu(I) with the ligand was revealed by titrimetric ultraviolet- visible (UV-vis) spectroscopic analysis. Formation of a high-molecular-weight polymer (M-w = 1.21 x 10(5) Da) was confirmed by a size-exclusion chromatography-viscometry-right-angle laser light scattering study. A bundle structure of the polymer chains was observed by scanning electron microscopy. A cyclic voltammogram of the polymer film showed reversible redox waves at a negative potential. A device consisting of indium tin oxide (ITO) glass coated with a film of the polymer exhibited reversible green-to-black electrochromism upon alternate application of -3 and +1 V.}, language = {en} } @misc{WittSchaumloeffelSchaumloeffeletal.2020, author = {Witt, Barbara and Schauml{\"o}ffel, Dirk and Schauml{\"o}ffel, Dirk and Schwerdtle, Tanja}, title = {Subcellular Localization of Copper}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {862}, issn = {1866-8372}, doi = {10.25932/publishup-45954}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459544}, pages = {27}, year = {2020}, abstract = {As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer's disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.}, language = {en} } @article{WittSchaumloeffelSchwerdtle2020, author = {Witt, Barbara and Schauml{\"o}ffel, Dirk and Schwerdtle, Tanja}, title = {Subcellular Localization of Copper}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {7}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21072341}, pages = {25}, year = {2020}, abstract = {As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer's disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.}, language = {en} }