@article{GoebelXieNeumannetal.2012, author = {Goebel, Ronald and Xie, Zai-Lai and Neumann, Mike and G{\"u}nter, Christina and Loebbicke, Ruben and Kubo, Shiori and Titirici, Maria-Magdalena and Giordano, Cristina and Taubert, Andreas}, title = {Synthesis of mesoporous carbon/iron carbide hybrids with unusually high surface areas from the ionic liquid precursor [Bmim][FeCl4]}, series = {CrystEngComm}, volume = {14}, journal = {CrystEngComm}, number = {15}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1466-8033}, doi = {10.1039/c2ce25064k}, pages = {4946 -- 4951}, year = {2012}, abstract = {Mesoporous carbon/iron carbide hybrid materials with surface areas reaching 800 m(2) g(-1) were synthesized via an exotemplating route using monolithic mesoporous silica as template and the ionic liquid 1-butyl-3-methylimidazolium tetrachloridoferrate(III) [Bmim][FeCl4] as carbon and iron source. After heat treatment (750 degrees C under argon) of the [Bmim][FeCl4] precursor confined within the silica matrix, the silica exotemplate was removed with HF leaving the mesoporous C/Fe3C hybrid behind. The surface areas and the pore sizes depend on the exotemplate and the surface areas a significantly larger than any other surface area reported for C/Fe3C hybrid materials so far. The approach is thus a prototype for the synthesis of high-surface area iron carbide-based hybrid materials with potential application in catalysis.}, language = {en} }