@article{HsuKrekhovTarantolaetal.2019, author = {Hsu, H. F. and Krekhov, Andrey and Tarantola, Marco and Beta, Carsten and Bodenschatz, Eberhardt}, title = {Interplay between myosin II and actin dynamics in chemotactic amoeba}, series = {New journal of physics : the open-access journal for physics}, volume = {21}, journal = {New journal of physics : the open-access journal for physics}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab5822}, pages = {15}, year = {2019}, abstract = {The actin cytoskeleton and its response to external chemical stimuli is fundamental to the mechano-biology of eukaryotic cells and their functions. One of the key players that governs the dynamics of the actin network is the motor protein myosin II. Based on a phase space embedding we have identified from experiments three phases in the cytoskeletal dynamics of starved Dictyostelium discoideum in response to a precisely controlled chemotactic stimulation. In the first two phases the dynamics of actin and myosin II in the cortex is uncoupled, while in the third phase the time scale for the recovery of cortical actin is determined by the myosin II dynamics. We report a theoretical model that captures the experimental observations quantitatively. The model predicts an increase in the optimal response time of actin with decreasing myosin II-actin coupling strength highlighting the role of myosin II in the robust control of cell contraction.}, language = {en} }