@article{SongBierScheller1995, author = {Song, Min Ik and Bier, Frank Fabian and Scheller, Frieder W.}, title = {A method to detect superoxide radicals using teflon membrane and superoxide dismutase}, year = {1995}, language = {en} } @article{KagelBierFrohmeetal.2019, author = {Kagel, Heike and Bier, Frank Fabian and Frohme, Marcus and Gl{\"o}kler, J{\"o}rn F.}, title = {A Novel Optical Method To Reversibly Control Enzymatic Activity Based On Photoacids}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-50867-w}, pages = {6}, year = {2019}, abstract = {Most biochemical reactions depend on the pH value of the aqueous environment and some are strongly favoured to occur in an acidic environment. A non-invasive control of pH to tightly regulate such reactions with defined start and end points is a highly desirable feature in certain applications, but has proven difficult to achieve so far. We report a novel optical approach to reversibly control a typical biochemical reaction by changing the pH and using acid phosphatase as a model enzyme. The reversible photoacid G-acid functions as a proton donor, changing the pH rapidly and reversibly by using high power UV LEDs as an illumination source in our experimental setup. The reaction can be tightly controlled by simply switching the light on and off and should be applicable to a wide range of other enzymatic reactions, thus enabling miniaturization and parallelization through non-invasive optical means.}, language = {en} } @article{KerstingRauschBieretal.2018, author = {Kersting, Sebastian and Rausch, Valentina and Bier, Frank Fabian and von Nickisch-Rosenegk, Markus}, title = {A recombinase polymerase amplification assay for the diagnosis of atypical pneumonia}, series = {Analytical biochemistry : methods in the biological sciences}, volume = {550}, journal = {Analytical biochemistry : methods in the biological sciences}, publisher = {Elsevier}, address = {San Diego}, issn = {0003-2697}, doi = {10.1016/j.ab.2018.04.014}, pages = {54 -- 60}, year = {2018}, abstract = {Pneumonia is one of the most common and potentially lethal infectious conditions worldwide. Streptococcus pneumoniae is the pathogen most frequently associated with bacterial community-acquired pneumonia, while Legionella pneumophila is the major cause for local outbreaks of legionellosis. Both pathogens can be difficult to diagnose since signs and symptoms are nonspecific and do not differ from other causes of pneumonia. Therefore, a rapid diagnosis within a clinically relevant time is essential for a fast onset of the proper treatment. Although methods based on polymerase chain reaction significantly improved the identification of pathogens, they are difficult to conduct and need specialized equipment. We describe a rapid and sensitive test using isothermal recombinase polymerase amplification and detection on a disposable test strip. This method does not require any special instrumentation and can be performed in less than 20 min. The analytical sensitivity in the multiplex assay amplifying specific regions of S. pneumoniae and L. pneumophila simultaneously was 10 CFUs of genomic DNA per reaction. In cross detection studies with closely related strains and other bacterial agents the specificity of the RPA was confirmed. The presented method is applicable for near patient and field testing with a rather simple routine and the possibility for a read out with the naked eye.}, language = {en} } @article{BierEhrentreichFoersterDoellingetal.1997, author = {Bier, Frank Fabian and Ehrentreich-F{\"o}rster, Eva and D{\"o}lling, R. and Eremenko, A. V. and Scheller, Frieder W.}, title = {A redox-label immunosensor on basis of a bi-enzyme electrode}, year = {1997}, language = {en} } @misc{KniggeWengerBieretal.2017, author = {Knigge, Xenia and Wenger, C. and Bier, Frank Fabian and H{\"o}lzel, Ralph}, title = {AC electrokinetic immobilisation of nanoobjects as individual singles in regular arrays}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {46}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, pages = {S187 -- S187}, year = {2017}, language = {en} } @article{StankeWengerBieretal.2022, author = {Stanke, Sandra and Wenger, Christian and Bier, Frank Fabian and H{\"o}lzel, Ralph}, title = {AC electrokinetic immobilization of influenza virus}, series = {Electrophoresis : microfluids \& proteomics}, volume = {43}, journal = {Electrophoresis : microfluids \& proteomics}, number = {12}, publisher = {Wiley-Blackwell}, address = {Weinheim}, issn = {0173-0835}, doi = {10.1002/elps.202100324}, pages = {1309 -- 1321}, year = {2022}, abstract = {The use of alternating current (AC) electrokinetic forces, like dielectrophoresis and AC electroosmosis, as a simple and fast method to immobilize sub-micrometer objects onto nanoelectrode arrays is presented. Due to its medical relevance, the influenza virus is chosen as a model organism. One of the outstanding features is that the immobilization of viral material to the electrodes can be achieved permanently, allowing subsequent handling independently from the electrical setup. Thus, by using merely electric fields, we demonstrate that the need of prior chemical surface modification could become obsolete. The accumulation of viral material over time is observed by fluorescence microscopy. The influences of side effects like electrothermal fluid flow, causing a fluid motion above the electrodes and causing an intensity gradient within the electrode array, are discussed. Due to the improved resolution by combining fluorescence microscopy with deconvolution, it is shown that the viral material is mainly drawn to the electrode edge and to a lesser extent to the electrode surface. Finally, areas of application for this functionalization technique are presented.}, language = {en} } @article{LauxWengerBieretal.2020, author = {Laux, Eva-Maria and Wenger, Christian and Bier, Frank Fabian and Hoelzel, Ralph}, title = {AC electrokinetic immobilization of organic dye molecules}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis}, volume = {412}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry and Analusis}, number = {16}, publisher = {Springer}, address = {Berlin}, issn = {1618-2642}, doi = {10.1007/s00216-020-02480-4}, pages = {3859 -- 3870}, year = {2020}, abstract = {The application of inhomogeneous AC electric fields for molecular immobilization is a very fast and simple method that does not require any adaptions to the molecule's functional groups or charges. Here, the method is applied to a completely new category of molecules: small organic fluorescence dyes, whose dimensions amount to only 1 nm or even less. The presented setup and the electric field parameters used allow immobilization of dye molecules on the whole electrode surface as opposed to pure dielectrophoretic applications, where molecules are attracted only to regions of high electric field gradients, i.e., to the electrode tips and edges. In addition to dielectrophoresis and AC electrokinetic flow, molecular scale interactions and electrophoresis at short time scales are discussed as further mechanisms leading to migration and immobilization of the molecules.}, language = {en} } @misc{LauxKniggeWengeretal.2017, author = {Laux, Eva-Maria and Knigge, Xenia and Wenger, C. and Bier, Frank Fabian and H{\"o}lzel, Ralph}, title = {AC electrokinetic manipulation of nanoparticles and molecules}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {46}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, pages = {S189 -- S189}, year = {2017}, language = {en} } @article{PrueferWengerBieretal.2022, author = {Pr{\"u}fer, Mareike and Wenger, Christian and Bier, Frank Fabian and Laux, Eva-Maria and H{\"o}lzel, Ralph}, title = {Activity of AC electrokinetically immobilized horseradish peroxidase}, series = {Electrophoresis : microfluidics, nanoanalysis \& proteomics}, journal = {Electrophoresis : microfluidics, nanoanalysis \& proteomics}, publisher = {Wiley}, address = {Hoboken}, issn = {0173-0835}, doi = {10.1002/elps.202200073}, pages = {1920 -- 1933}, year = {2022}, abstract = {Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45\% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.}, language = {en} } @article{MakowerBarminMorzunovaetal.1997, author = {Makower, Alexander and Barmin, Anatoli V. and Morzunova, T. and Eremenko, Arkadi V. and Bier, Frank Fabian and Scheller, Frieder W.}, title = {Affinity enzymomoetric assay for detection of organophosphorus compounds}, year = {1997}, language = {en} } @article{FischbachLohBieretal.2017, author = {Fischbach, Jens and Loh, Qiuting and Bier, Frank Fabian and Lim, Theam Soon and Frohme, Marcus and Gl{\"o}kler, J{\"o}rn}, title = {Alizarin Red S for Online Pyrophosphate Detection Identified by a Rapid Screening Method}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep45085}, pages = {9}, year = {2017}, abstract = {We identified Alizarin Red S and other well known fluorescent dyes useful for the online detection of pyrophosphate in enzymatic assays, including the loop mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assays. An iterative screening was used for a selected set of compounds to first secure enzyme compatibility, evaluate inorganic pyrophosphate sensitivity in the presence of manganese as quencher and optimize conditions for an online detection. Of the selected dyes, the inexpensive alizarin red S was found to selectively detect pyrophosphate under LAMP and PCR conditions and is superior with respect to its defined red-shifted spectrum, long shelf life and low toxicity. In addition, the newly identified properties may also be useful in other enzymatic assays which do not generate nucleic acids but are based on inorganic pyrophosphate. Finally, we propose that our screening method may provide a blueprint for rapid screening of compounds for detecting inorganic pyrophosphate.}, language = {en} } @article{BierEhrentreichFoersterScheller1996, author = {Bier, Frank Fabian and Ehrentreich-F{\"o}rster, Eva and Scheller, Frieder W.}, title = {Amplifying bienzyme cycle-linked immunoassays for determination of 2,4- dichlorphenoxyacetic acid}, year = {1996}, language = {en} } @article{BierEhrentreichFoersterMakoweretal.1996, author = {Bier, Frank Fabian and Ehrentreich-F{\"o}rster, Eva and Makower, Alexander and Scheller, Frieder W.}, title = {An enzymatic amplification cycle for high sensitive immunoassay}, year = {1996}, language = {en} } @article{SchellerBier2004, author = {Scheller, Frieder W. and Bier, Frank Fabian}, title = {Analytical Biochemistry (Editorial)}, year = {2004}, language = {en} } @book{WollenbergerRennebergBieretal.2003, author = {Wollenberger, Ursula and Renneberg, Reinhard and Bier, Frank Fabian and Scheller, Frieder W.}, title = {Analytische Biochemie : eine praktische Einf{\"u}hrung in das Messen mit Biomolek{\"u}len}, publisher = {John Wiley \& Sons}, address = {Hoboken}, isbn = {3-527-30166-6}, pages = {222 S.}, year = {2003}, language = {de} } @article{MemczakLausterKaretal.2016, author = {Memczak, Henry and Lauster, Daniel and Kar, Parimal and Di Lella, Santiago and Volkmer, Rudolf and Knecht, Volker and Herrmann, Andreas and Ehrentreich-Foerster, Eva and Bier, Frank Fabian and Stoecklein, Walter F. M.}, title = {Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0159074}, pages = {82 -- 90}, year = {2016}, abstract = {Antibodies against spike proteins of influenza are used as a tool for characterization of viruses and therapeutic approaches. However, development, production and quality control of antibodies is expensive and time consuming. To circumvent these difficulties, three peptides were derived from complementarity determining regions of an antibody heavy chain against influenza A spike glycoprotein. Their binding properties were studied experimentally, and by molecular dynamics simulations. Two peptide candidates showed binding to influenza A/Aichi/2/68 H3N2. One of them, termed PeB, with the highest affinity prevented binding to and infection of target cells in the micromolar region without any cytotoxic effect. PeB matches best the conserved receptor binding site of hemagglutinin. PeB bound also to other medical relevant influenza strains, such as human-pathogenic A/California/7/2009 H1N1, and avian-pathogenic A/MuteSwan/Rostock/R901/2006 H7N1. Strategies to improve the affinity and to adapt specificity are discussed and exemplified by a double amino acid substituted peptide, obtained by substitutional analysis. The peptides and their derivatives are of great potential for drug development as well as biosensing.}, language = {en} } @article{SchellerBierNeumann1994, author = {Scheller, Frieder W. and Bier, Frank Fabian and Neumann, B.}, title = {Bioindikation in aquatischen {\"O}kosystemen : Bioindikation in limnischen und k{\"u}stennahen {\"O}kosystemen ; Grundlagen, Verfahren und Methoden}, publisher = {Fischer}, address = {Jena}, pages = {S. 380 - 386}, year = {1994}, language = {de} } @phdthesis{Bier1997, author = {Bier, Frank Fabian}, title = {Biomolekulare Erkennung und Signaltransduktion in Affinit{\"a}tssensoren}, address = {Potsdam}, pages = {97, A189 S. : graph. Darst.}, year = {1997}, language = {de} } @article{SchellerBier2003, author = {Scheller, Frieder W. and Bier, Frank Fabian}, title = {Biosensoren}, year = {2003}, language = {de} } @article{SchellerBierPfeiffer1995, author = {Scheller, Frieder W. and Bier, Frank Fabian and Pfeiffer, Dorothea}, title = {Biosensoren : Grundlagen und Anwendungen}, year = {1995}, language = {de} }