@misc{AgarwalCaesarMarwanetal.2019, author = {Agarwal, Ankit and Caesar, Levke and Marwan, Norbert and Maheswaran, Rathinasamy and Merz, Bruno}, title = {Network-based identification and characterization of teleconnections on different scales}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {731}, issn = {1866-8372}, doi = {10.25932/publishup-43052}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430520}, pages = {12}, year = {2019}, abstract = {Sea surface temperature (SST) patterns can - as surface climate forcing - affect weather and climate at large distances. One example is El Ni{\~n}o-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of - at a certain timescale - similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole.}, language = {en} } @phdthesis{AlHalbouni2019, author = {Al-Halbouni, Djamil}, title = {Photogrammetry and distinct element geomechanical modelling of sinkholes and large-scale karstic depressions}, doi = {10.25932/publishup-43215}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432159}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2019}, abstract = {Sinkholes and depressions are typical landforms of karst regions. They pose a considerable natural hazard to infrastructure, agriculture, economy and human life in affected areas worldwide. The physio-chemical processes of sinkholes and depression formation are manifold, ranging from dissolution and material erosion in the subsurface to mechanical subsidence/failure of the overburden. This thesis addresses the mechanisms leading to the development of sinkholes and depressions by using complementary methods: remote sensing, distinct element modelling and near-surface geophysics. In the first part, detailed information about the (hydro)-geological background, ground structures, morphologies and spatio-temporal development of sinkholes and depressions at a very active karst area at the Dead Sea are derived from satellite image analysis, photogrammetry and geologic field surveys. There, clusters of an increasing number of sinkholes have been developing since the 1980s within large-scale depressions and are distributed over different kinds of surface materials: clayey mud, sandy-gravel alluvium and lacustrine evaporites (salt). The morphology of sinkholes differs depending in which material they form: Sinkholes in sandy-gravel alluvium and salt are generally deeper and narrower than sinkholes in the interbedded evaporite and mud deposits. From repeated aerial surveys, collapse precursory features like small-scale subsidence, individual holes and cracks are identified in all materials. The analysis sheds light on the ongoing hazardous subsidence process, which is driven by the base-level fall of the Dead Sea and by the dynamic formation of subsurface water channels. In the second part of this thesis, a novel, 2D distinct element geomechanical modelling approach with the software PFC2D-V5 to simulating individual and multiple cavity growth and sinkhole and large-scale depression development is presented. The approach involves a stepwise material removal technique in void spaces of arbitrarily shaped geometries and is benchmarked by analytical and boundary element method solutions for circular cavities. Simulated compression and tension tests are used to calibrate model parameters with bulk rock properties for the materials of the field site. The simulations show that cavity and sinkhole evolution is controlled by material strength of both overburden and cavity host material, the depth and relative speed of the cavity growth and the developed stress pattern in the subsurface. Major findings are: (1) A progressively deepening differential subrosion with variable growth speed yields a more fragmented stress pattern with stress interaction between the cavities. It favours multiple sinkhole collapses and nesting within large-scale depressions. (2) Low-strength materials do not support large cavities in the material removal zone, and subsidence is mainly characterised by gradual sagging into the material removal zone with synclinal bending. (3) High-strength materials support large cavity formation, leading to sinkhole formation by sudden collapse of the overburden. (4) Large-scale depression formation happens either by coalescence of collapsing holes, block-wise brittle failure, or gradual sagging and lateral widening. The distinct element based approach is compared to results from remote sensing and geophysics at the field site. The numerical simulation outcomes are generally in good agreement with derived morphometrics, documented surface and subsurface structures as well as seismic velocities. Complementary findings on the subrosion process are provided from electric and seismic measurements in the area. Based on the novel combination of methods in this thesis, a generic model of karst landform evolution with focus on sinkhole and depression formation is developed. A deepening subrosion system related to preferential flow paths evolves and creates void spaces and subsurface conduits. This subsequently leads to hazardous subsidence, and the formation of sinkholes within large-scale depressions. Finally, a monitoring system for shallow natural hazard phenomena consisting of geodetic and geophysical observations is proposed for similarly affected areas.}, language = {en} } @misc{AyzelVarentsovaErinaetal.2019, author = {Ayzel, Georgy and Varentsova, Natalia and Erina, Oxana and Sokolov, Dmitriy and Kurochkina, Liubov and Moreydo, Vsevolod}, title = {OpenForecast}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1338}, issn = {1866-8372}, doi = {10.25932/publishup-47329}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473295}, pages = {17}, year = {2019}, abstract = {The development and deployment of new operational runoff forecasting systems are a strong focus of the scientific community due to the crucial importance of reliable and timely runoff predictions for early warnings of floods and flashfloods for local businesses and communities. OpenForecast, the first operational runoff forecasting system in Russia, open for public use, is presented in this study. We developed OpenForecast based only on open-source software and data-GR4J hydrological model, ERA-Interim meteorological reanalysis, and ICON deterministic short-range meteorological forecasts. Daily forecasts were generated for two basins in the European part of Russia. Simulation results showed a limited efficiency in reproducing the spring flood of 2019. Although the simulations managed to capture the timing of flood peaks, they failed in estimating flood volume. However, further implementation of the parsimonious data assimilation technique significantly alleviates simulation errors. The revealed limitations of the proposed operational runoff forecasting system provided a foundation to outline its further development and improvement.}, language = {en} } @phdthesis{Beamish2019, author = {Beamish, Alison Leslie}, title = {Hyperspectral remote sensing of the spatial and temporal heterogeneity of low Arctic vegetation}, doi = {10.25932/publishup-42592}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425922}, school = {Universit{\"a}t Potsdam}, pages = {v, 102}, year = {2019}, abstract = {Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: • Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? • How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in leaf-level photosynthetic pigment concentrations? • How does spatial aggregation of high spectral resolution data from the ground to satellite scale influence low Arctic tundra vegetation signatures and thereby what is the potential of upcoming hyperspectral spaceborne systems for low Arctic vegetation characterization? To answer these questions a unique and detailed database was assembled. Field-based canopy-level spectral reflectance measurements, nadir digital photographs, and photosynthetic pigment concentrations of dominant low Arctic vegetation communities were acquired at three major phenological phases representing early, peak and late season. Data were collected in 2015 and 2016 in the Toolik Lake Research Natural Area located in north central Alaska on the North Slope of the Brooks Range. In addition to field data an aerial AISA hyperspectral image was acquired in the late season of 2016. Simulations of broadband Sentinel-2 and hyperspectral Environmental and Mapping Analysis Program (EnMAP) satellite reflectance spectra from ground-based reflectance spectra as well as simulations of EnMAP imagery from aerial hyperspectral imagery were also obtained. Results showed that canopy-level spectral variability within and between vegetation communities differed by phenological phase. The late season was identified as the most discriminative for identifying many dominant vegetation communities using both ground-based and simulated hyperspectral reflectance spectra. This was due to an overall reduction in spectral variability and comparable or greater differences in spectral reflectance between vegetation communities in the visible near infrared spectrum. Red, green, and blue (RGB) indices extracted from nadir digital photographs and pigment-driven vegetation indices extracted from ground-based spectral measurements showed strong significant relationships. RGB indices also showed moderate relationships with chlorophyll and carotenoid pigment concentrations. The observed relationships with the broadband RGB channels of the digital camera indicate that vegetation colour strongly influences the response of pigment-driven spectral indices and digital cameras can track the seasonal development and degradation of photosynthetic pigments. Spatial aggregation of hyperspectral data from the ground to airborne, to simulated satel-lite scale was influenced by non-photosynthetic components as demonstrated by the distinct shift of the red edge to shorter wavelengths. Correspondence between spectral reflectance at the three scales was highest in the red spectrum and lowest in the near infra-red. By artificially mixing litter spectra at different proportions to ground-based spectra, correspondence with aerial and satellite spectra increased. Greater proportions of litter were required to achieve correspondence at the satellite scale. Overall this thesis found that integrating multiple temporal, spectral, and spatial data is necessary to monitor the complexity and heterogeneity of Arctic tundra ecosystems. The identification of spectrally similar vegetation communities can be optimized using non-peak season hyperspectral data leading to more detailed identification of vegetation communities. The results also highlight the power of vegetation colour to link ground-based and satellite data. Finally, a detailed characterization non-photosynthetic ecosystem components is crucial for accurate interpretation of vegetation signals at landscape scales.}, language = {en} } @misc{BorghiniFerreroO'Brienetal.2019, author = {Borghini, Alessia and Ferrero, Silvio and O'Brien, Patrick J. and Laurent, Oscar and G{\"u}nter, Christina and Ziemann, Martin Andreas}, title = {Cryptic metasomatic agent measured in situ in Variscan mantle rocks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {976}, issn = {1866-8372}, doi = {10.25932/publishup-47459}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474592}, pages = {207 -- 234}, year = {2019}, abstract = {Garnet of eclogite (formerly termed garnet clinopyroxenite) hosted in lenses of orogenic garnet peridotite from the Granulitgebirge, NW Bohemian Massif, contains unique inclusions of granitic melt, now either glassy or crystallized. Analysed glasses and re-homogenized inclusions are hydrous, peraluminous, and enriched in highly incompatible elements characteristic of the continental crust such as Cs, Li, B, Pb, Rb, Th, and U. The original melt thus represents a pristine, chemically evolved metasomatic agent, which infiltrated the mantle via deep continental subduction during the Variscan orogeny. The bulk chemical composition of the studied eclogites is similar to that of Fe-rich basalt and the enrichment in LILE and U suggest a subduction-related component. All these geochemical features confirm metasomatism. In comparison with many other garnet+clinopyroxene-bearing lenses in peridotites of the Bohemian Massif, the studied samples from Rubinberg and Klatschm{\"u}hle are more akin to eclogite than pyroxenites, as reflected in high jadeite content in clinopyroxene, relatively low Mg, Cr, and Ni but relatively high Ti. However, trace elements of both bulk rock and individual mineral phases show also important differences making these samples rather unique. Metasomatism involving a melt requiring a trace element pattern very similar to the composition reported here has been suggested for the source region of rocks of the so-called durbachite suite, that is, ultrapotassic melanosyenites, which are found throughout the high-grade Variscan basement. Moreover, the Th, U, Pb, Nb, Ta, and Ti patterns of these newly studied melt inclusions (MI) strongly resemble those observed for peridotite and its enclosed pyroxenite from the T-7 borehole (Star{\´e}, Česk{\´e} Středhoři Mountains) in N Bohemia. This suggests that a similar kind of crustal-derived melt also occurred here. This study of granitic MI in eclogites from peridotites has provided the first direct characterization of a preserved metasomatic melt, possibly responsible for the metasomatism of several parts of the mantle in the Variscides.}, language = {en} } @misc{BriegerHerzschuhPestryakovaetal.2019, author = {Brieger, Frederic and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Bookhagen, Bodo and Zakharov, Evgenii S. and Kruse, Stefan}, title = {Advances in the derivation of Northeast Siberian forest metrics using high-resolution UAV-based photogrammetric point clouds}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1337}, issn = {1866-8372}, doi = {10.25932/publishup-47331}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473318}, pages = {24}, year = {2019}, abstract = {Forest structure is a crucial component in the assessment of whether a forest is likely to act as a carbon sink under changing climate. Detailed 3D structural information about the tundra-taiga ecotone of Siberia is mostly missing and still underrepresented in current research due to the remoteness and restricted accessibility. Field based, high-resolution remote sensing can provide important knowledge for the understanding of vegetation properties and dynamics. In this study, we test the applicability of consumer-grade Unmanned Aerial Vehicles (UAVs) for rapid calculation of stand metrics in treeline forests. We reconstructed high-resolution photogrammetric point clouds and derived canopy height models for 10 study sites from NE Chukotka and SW Yakutia. Subsequently, we detected individual tree tops using a variable-window size local maximum filter and applied a marker-controlled watershed segmentation for the delineation of tree crowns. With this, we successfully detected 67.1\% of the validation individuals. Simple linear regressions of observed and detected metrics show a better correlation (R2) and lower relative root mean square percentage error (RMSE\%) for tree heights (mean R2 = 0.77, mean RMSE\% = 18.46\%) than for crown diameters (mean R2 = 0.46, mean RMSE\% = 24.9\%). The comparison between detected and observed tree height distributions revealed that our tree detection method was unable to representatively identify trees <2 m. Our results show that plot sizes for vegetation surveys in the tundra-taiga ecotone should be adapted to the forest structure and have a radius of >15-20 m to capture homogeneous and representative forest stands. Additionally, we identify sources of omission and commission errors and give recommendations for their mitigation. In summary, the efficiency of the used method depends on the complexity of the forest's stand structure.}, language = {en} } @phdthesis{Codeco2019, author = {Codeco, Marta Sofia Ferreira}, title = {Constraining the hydrology at Minas da Panasqueira W-Sn-Cu deposit, Portugal}, doi = {10.25932/publishup-42975}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429752}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 232}, year = {2019}, abstract = {This dissertation combines field and geochemical observations and analyses with numerical modeling to understand the formation of vein-hosted Sn-W ore in the Panasqueira deposit of Portugal, which is among the ten largest worldwide. The deposit is located above a granite body that is altered by magmatic-hydrothermal fluids in its upper part (greisen). These fluids are thought to be the source of metals, but that was still under debate. The goal of this study is to determine the composition and temperature of hydrothermal fluids at Panasqueira, and with that information to construct a numerical model of the hydrothermal system. The focus is on analysis of the minerals tourmaline and white mica, which formed during mineralization and are widespread throughout the deposit. Tourmaline occurs mainly in alteration zones around mineralized veins and is less abundant in the vein margins. White mica is more widespread. It is abundant in vein margins as well as alteration zones, and also occurs in the granite greisen. The laboratory work involved in-situ microanalysis of major- and trace elements in tourmaline and white mica, and boron-isotope analysis in both minerals by secondary ion mass spectrometry (SIMS). The boron-isotope composition of tourmaline and white mica suggests a magmatic source. Comparison of hydrothermally-altered and unaltered rocks from drill cores shows that the ore metals (W, Sn, Cu, and Zn) and As, F, Li, Rb, and Cs were introduced during the alteration. Most of these elements are also enriched in tourmaline and mica, which confirms their potential value as exploration guides to Sn-W ores elsewhere. The thermal evolution of the hydrothermal system was estimated by B-isotope exchange thermometry and the Ti-in-quartz method. Both methods yielded similar temperatures for the early hydrothermal phase: 430° to 460°C for B-isotopes and 503° ± 24°C for Ti-in-quartz. Mineral pairs from a late fault zone yield significantly lower median temperatures of 250°C. The combined results of thermometry with variations in chemical and B-isotope composition of tourmaline and mica suggest that a similar magmatic-hydrothermal fluid was active at all stages of mineralization. Mineralization in the late stage shows the same B-isotope composition as in the main stage despite a ca. 250°C cooling, which supports a multiple injection model of magmatic-hydrothermal fluids. Two-dimensional numerical simulations of convection in a multiphase NaCl hydrothermal system were conducted: (a) in order to test a new approach (lower dimensional elements) for flow through fractures and faults and (b) in order to identify conditions for horizontal fluid flow as observed in the flat-lying veins at Panasqueira. The results show that fluid flow over an intrusion (heat and fluid source) develops a horizontal component if there is sufficient fracture connectivity. Late, steep fault zones have been identified in the deposit area, which locally contain low-temperature Zn-Pb mineralization. The model results confirm that the presence of subvertical faults with enhanced permeability play a crucial role in the ascent of magmatic fluids to the surface and the recharge of meteoric waters. Finally, our model results suggest that recharge of meteoric fluids and mixing processes may be important at later stages, while flow of magmatic fluids dominate the early stages of the hydrothermal fluid circulation.}, language = {en} } @phdthesis{Desanois2019, author = {Desanois, Louis}, title = {On the origin of epithermal Sn-Ag-Zn mineralization at the Pirquitas mine, NW Argentina}, doi = {10.25932/publishup-43082}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430822}, school = {Universit{\"a}t Potsdam}, pages = {104}, year = {2019}, abstract = {The Central Andes host large reserves of base and precious metals. The region represented, in 2017, an important part of the worldwide mining activity. Three principal types of deposits have been identified and studied: 1) porphyry type deposits extending from central Chile and Argentina to Bolivia, and Northern Peru, 2) iron oxide-copper-gold (IOCG) deposits, extending from central Peru to central Chile, and 3) epithermal tin polymetallic deposits extending from Southern Peru to Northern Argentina, which compose a large part of the deposits of the Bolivian Tin Belt (BTB). Deposits in the BTB can be divided into two major types: (1) tin-tungsten-zinc pluton-related polymetallic deposits, and (2) tin-silver-lead-zinc epithermal polymetallic vein deposits. Mina Pirquitas is a tin-silver-lead-zinc epithermal polymetallic vein deposit, located in north-west Argentina, that used to be one of the most important tin-silver producing mine of the country. It was interpreted to be part of the BTB and it shares similar mineral associations with southern pluton related BTB epithermal deposits. Two major mineralization events related to three pulses of magmatic fluids mixed with meteoric water have been identified. The first event can be divided in two stages: 1) stage I-1 with quartz, pyrite, and cassiterite precipitating from fluids between 233 and 370 °C and salinity between 0 and 7.5 wt\%, corresponding to a first pulse of fluids, and 2) stage I-2 with sphalerite and tin-silver-lead-antimony sulfosalts precipitating from fluids between 213 and 274 °C with salinity up to 10.6 wt\%, corresponding to a new pulse of magmatic fluids in the hydrothermal system. The mineralization event II deposited the richest silver ores at Pirquitas. Event II fluids temperatures and salinities range between 190 and 252 °C and between 0.9 and 4.3 wt\% respectively. This corresponds to the waning supply of magmatic fluids. Noble gas isotopic compositions and concentrations in ore-hosted fluid inclusions demonstrate a significant contribution of magmatic fluids to the Pirquitas mineralization although no intrusive rocks are exposed in the mine area. Lead and sulfur isotopic measurements on ore minerals show that Pirquitas shares a similar signature with southern pluton related polymetallic deposits in the BTB. Furthermore, the major part of the sulfur isotopic values of sulfide and sulfosalt minerals from Pirquitas ranges in the field for sulfur derived from igneous rocks. This suggests that the main contribution of sulfur to the hydrothermal system at Pirquitas is likely to be magma-derived. The precise age of the deposit is still unknown but the results of wolframite dating of 2.9 ± 9.1 Ma and local structural observations suggest that the late mineralization event is younger than 12 Ma.}, language = {en} } @phdthesis{Ghani2019, author = {Ghani, Humaad}, title = {Structural evolution of the Kohat and Potwar fold and thrust belts of Pakistan}, doi = {10.25932/publishup-44077}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440775}, school = {Universit{\"a}t Potsdam}, pages = {viii, 121}, year = {2019}, abstract = {Fold and thrust belts are characteristic features of collisional orogen that grow laterally through time by deforming the upper crust in response to stresses caused by convergence. The deformation propagation in the upper crust is accommodated by shortening along major folds and thrusts. The formation of these structures is influenced by the mechanical strength of d{\´e}collements, basement architecture, presence of preexisting structures and taper of the wedge. These factors control not only the sequence of deformation but also cause differences in the structural style. The Himalayan fold and thrust belt exhibits significant differences in the structural style from east to west. The external zone of the Himalayan fold and thrust belt, also called the Subhimalaya, has been extensively studied to understand the temporal development and differences in the structural style in Bhutan, Nepal and India; however, the Subhimalaya in Pakistan remains poorly studied. The Kohat and Potwar fold and thrust belts (herein called Kohat and Potwar) represent the Subhimalaya in Pakistan. The Main Boundary Thrust (MBT) marks the northern boundary of both Kohat and Potwar, showing that these belts are genetically linked to foreland-vergent deformation within the Himalayan orogen, despite the pronounced contrast in structural style. This contrast becomes more pronounced toward south, where the active strike-slip Kalabagh Fault Zone links with the Kohat and Potwar range fronts, known as the Surghar Range and the Salt Range, respectively. The Surghar and Salt Ranges developed above the Surghar Thrust (SGT) and Main Frontal Thrust (MFT). In order to understand the structural style and spatiotemporal development of the major structures in Kohat and Potwar, I have used structural modeling and low temperature thermochronolgy methods in this study. The structural modeling is based on construction of balanced cross-sections by integrating surface geology, seismic reflection profiles and well data. In order to constrain the timing and magnitude of exhumation, I used apatite (U-Th-Sm)/He (AHe) and apatite fission track (AFT) dating. The results obtained from both methods are combined to document the Paleozoic to Recent history of Kohat and Potwar. The results of this research suggest two major events in the deformation history. The first major deformation event is related to Late Paleozoic rifting associated with the development of the Neo-Tethys Ocean. The second major deformation event is related to the Late Miocene to Pliocene development of the Himalayan fold and thrust belt in the Kohat and Potwar. The Late Paleozoic rifting is deciphered by inverse thermal modelling of detrital AFT and AHe ages from the Salt Range. The process of rifting in this area created normal faulting that resulted in the exhumation/erosion of Early to Middle Paleozoic strata, forming a major unconformity between Cambrian and Permian strata that is exposed today in the Salt Range. The normal faults formed in Late Paleozoic time played an important role in localizing the Miocene-Pliocene deformation in this area. The combination of structural reconstructions and thermochronologic data suggest that deformation initiated at 15±2 Ma on the SGT ramp in the southern part of Kohat. The early movement on the SGT accreted the foreland into the Kohat deforming wedge, forming the range front. The development of the MBT at 12±2 Ma formed the northern boundary of Kohat and Potwar. Deformation propagated south of the MBT in the Kohat on double d{\´e}collements and in the Potwar on a single basal d{\´e}collement. The double d{\´e}collement in the Kohat adopted an active roof-thrust deformation style that resulted in the disharmonic structural style in the upper and lower parts of the stratigraphic section. Incremental shortening resulted in the development of duplexes in the subsurface between two d{\´e}collements and imbrication above the roof thrust. Tectonic thickening caused by duplexes resulted in cooling and exhumation above the roof thrust by removal of a thick sequence of molasse strata. The structural modelling shows that the ramps on which duplexes formed in Kohat continue as tip lines of fault propagation folds in the Potwar. The absence of a double d{\´e}collement in the Potwar resulted in the preservation of a thick sequence of molasse strata there. The temporal data suggest that deformation propagated in-sequence from ~ 8 to 3 Ma in the northern part of Kohat and Potwar; however, internal deformation in the Kohat was more intense, probably required for maintaining a critical taper after a significant load was removed above the upper d{\´e}collement. In the southern part of Potwar, a steeper basement slope (β≥3°) and the presence of salt at the base of the stratigraphic section allowed for the complete preservation of the stratigraphic wedge, showcased by very little internal deformation. Activation of the MFT at ~4 Ma allowed the Salt Range to become the range front of the Potwar. The removal of a large amount of molasse strata above the MFT ramp enhanced the role of salt in shaping the structural style of the Salt Range and Kalabagh Fault Zone. Salt accumulation and migration resulted in the formation of normal faults in both areas. Salt migration in the Kalabagh fault zone has triggered out-of-sequence movement on ramps in the Kohat. The amount of shortening calculated between the MBT and the SGT in Kohat is 75±5 km and between the MBT and the MFT in Potwar is 65±5 km. A comparable amount of shortening is accommodated in the Kohat and Potwar despite their different widths: 70 km Kohat and 150 km Potwar. In summary, this research suggests that deformation switched between different structures during the last ~15 Ma through different modes of fault propagation, resulting in different structural styles and the out-of-sequence development of Kohat and Potwar.}, language = {en} } @misc{GholamrezaieScheckWenderothBottetal.2019, author = {Gholamrezaie, Ershad and Scheck-Wenderoth, Magdalena and Bott, Judith and Heidbach, Oliver and Strecker, Manfred}, title = {3-D crustal density model of the Sea of Marmara}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {737}, issn = {1866-8372}, doi = {10.25932/publishup-43466}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434661}, pages = {785 -- 807}, year = {2019}, abstract = {Abstract. The Sea of Marmara, in northwestern Turkey, is a transition zone where the dextral North Anatolian Fault zone (NAFZ) propagates westward from the Anatolian Plate to the Aegean Sea Plate. The area is of interest in the context of seismic hazard of Istanbul, a metropolitan area with about 15 million inhabitants. Geophysical observations indicate that the crust is heterogeneous beneath the Marmara basin, but a detailed characterization of the crustal heterogeneities is still missing. To assess if and how crustal heterogeneities are related to the NAFZ segmentation below the Sea of Marmara, we develop new crustal-scale 3-D density models which integrate geological and seismological data and that are additionally constrained by 3-D gravity modeling. For the latter, we use two different gravity datasets including global satellite data and local marine gravity observation. Considering the two different datasets and the general non-uniqueness in potential field modeling, we suggest three possible "end-member" solutions that are all consistent with the observed gravity field and illustrate the spectrum of possible solutions. These models indicate that the observed gravitational anomalies originate from significant density heterogeneities within the crust. Two layers of sediments, one syn-kinematic and one pre-kinematic with respect to the Sea of Marmara formation are underlain by a heterogeneous crystalline crust. A felsic upper crystalline crust (average density of 2720 kgm⁻³) and an intermediate to mafic lower crystalline crust (average density of 2890 kgm⁻³) appear to be cross-cut by two large, dome-shaped mafic highdensity bodies (density of 2890 to 3150 kgm⁻³) of considerable thickness above a rather uniform lithospheric mantle (3300 kgm⁻³). The spatial correlation between two major bends of the main Marmara fault and the location of the highdensity bodies suggests that the distribution of lithological heterogeneities within the crust controls the rheological behavior along the NAFZ and, consequently, maybe influences fault segmentation and thus the seismic hazard assessment in the region.}, language = {en} } @phdthesis{Herrmann2019, author = {Herrmann, Johannes}, title = {The mechanical behavior of shales}, doi = {10.25932/publishup-42968}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429683}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 156}, year = {2019}, abstract = {The thesis comprises three experimental studies, which were carried out to unravel the short- as well as the long-term mechanical properties of shale rocks. Short-term mechanical properties such as compressive strength and Young's modulus were taken from recorded stress-strain curves of constant strain rate tests. Long-term mechanical properties are represented by the time- dependent creep behavior of shales. This was obtained from constant stress experiments, where the test duration ranged from a couple minutes up to two weeks. A profound knowledge of the mechanical behavior of shales is crucial to reliably estimate the potential of a shale reservoir for an economical and sustainable extraction of hydrocarbons (HC). In addition, healing of clay-rich forming cap rocks involving creep and compaction is important for underground storage of carbon dioxide and nuclear waste. Chapter 1 introduces general aspects of the research topic at hand and highlights the motivation for conducting this study. At present, a shift from energy recovered from conventional resources e.g., coal towards energy provided by renewable resources such as wind or water is a big challenge. Gas recovered from unconventional reservoirs (shale plays) is considered a potential bridge technology. In Chapter 2, short-term mechanical properties of two European mature shale rocks are presented, which were determined from constant strain rate experiments performed at ambient and in situ deformation conditions (confining pressure, pc ≤ 100 MPa, temperature, T ≤ 125 °C, representing pc, T - conditions at < 4 km depth) using a Paterson- type gas deformation apparatus. The investigated shales were mainly from drill core material of Posidonia (Germany) shale and weathered material of Bowland (United Kingdom) shale. The results are compared with mechanical properties of North American shales. Triaxial compression tests performed perpendicular to bedding revealed semibrittle deformation behavior of Posidonia shale with pronounced inelastic deformation. This is in contrast to Bowland shale samples that deformed brittle and displayed predominantly elastic deformation. The static Young's modulus, E, and triaxial compressive strength, σTCS, determined from recorded stress-strain curves strongly depended on the applied confining pressure and sample composition, whereas the influence of temperature and strain rate on E and σTCS was minor. Shales with larger amounts of weak minerals (clay, mica, total organic carbon) yielded decreasing E and σTCS. This may be related to a shift from deformation supported by a load-bearing framework of hard phases (e.g., quartz) towards deformation of interconnected weak minerals, particularly for higher fractions of about 25 - 30 vol\% weak phases. Comparing mechanical properties determined at reservoir conditions with mechanical data applying effective medium theories revealed that E and σTCS of Posidonia and Bowland shale are close to the lower (Reuss) bound. Brittleness B is often quoted as a measure indicating the response of a shale formation to stimulation and economic production. The brittleness, B, of Posidonia and Bowland shale, estimated from E, is in good agreement with the experimental results. This correlation may be useful to predict B from sonic logs, from which the (dynamic) Young's modulus can be retrieved. Chapter 3 presents a study of the long-term creep properties of an immature Posidonia shale. Constant stress experiments (σ = const.) were performed at elevated confining pressures (pc = 50 - 200 MPa) and temperatures (T = 50 - 200 °C) to simulate reservoir pc, T - conditions. The Posidonia shale samples were acquired from a quarry in South Germany. At stresses below ≈ 84 \% compressive strength of Posidonia shale, at high temperature and low confining pressure, samples showed pronounced transient (primary) creep with high deformation rates in the semibrittle regime. Sample deformation was mainly accommodated by creep of weak sample constituents and pore space reduction. An empirical power law relation between strain and time, which also accounts for the influence of pc, T and σ on creep strain was formulated to describe the primary creep phase. Extrapolation of the results to a creep period of several years, which is the typical time interval for a large production decline, suggest that fracture closure is unlikely at low stresses. At high stresses as expected for example at the contact between the fracture surfaces and proppants added during stimulation measures, subcritical crack growth may lead to secondary and tertiary creep. An empirical power law is suggested to describe secondary creep of shale rocks as a function of stress, pressure and temperature. The predicted closure rates agree with typical production decline curves recorded during the extraction of hydrocarbons. At the investigated conditions, the creep behavior of Posidonia shale was found to correlate with brittleness, calculated from sample composition. In Chapter 4 the creep properties of mature Posidonia and Bowland shales are presented. The observed long-term creep behavior is compared to the short-term behavior determined in Chapter 2. Creep experiments were performed at simulated reservoir conditions of pc = 50 - 115 MPa and T = 75 - 150 °C. Similar to the mechanical response of immature Posidonia shale samples investigated in Chapter 3, creep strain rates of mature Bowland and Posidonia shales were enhanced with increasing stress and temperature and decreasing confining pressures. Depending on applied deformation conditions, samples displayed either only a primary (decelerating) or in addition also a secondary (quasi-steady state) and subsequently a tertiary (accelerating) creep phase before failure. At the same deformation conditions, creep strain of Posidonia shale, which is rich in weak constituents, is tremendously higher than of quartz-rich Bowland shale. Typically, primary creep strain is again mostly accommodated by deformation of weak minerals and local pore space reduction. At the onset of tertiary creep most of the deformation was accommodated by micro crack growth. A power law was used to characterize the primary creep phase of Posidonia and Bowland shale. Primary creep strain of shale rocks is inversely correlated to triaxial compressive strength and brittleness, as described in Chapter 2. Chapter 5 provides a synthesis of the experimental findings and summarizes the major results of the studies presented in Chapters 2 - 4 and potential applications in the Exploration \& Production industry. Chapter 6 gives a brief outlook on potential future experimental research that would help to further improve our understanding of processes leading to fracture closure involving proppant embedment in unconventional shale gas reservoirs. Such insights may allow to improve stimulation techniques aimed at maintaining economical extraction of hydrocarbons over several years.}, language = {en} } @misc{HesseComunianAttinger2019, author = {Heße, Falk and Comunian, Alessandro and Attinger, Sabine}, title = {What We Talk About When We Talk About Uncertainty}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {754}, issn = {1866-8372}, doi = {10.25932/publishup-43658}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436582}, pages = {20}, year = {2019}, language = {en} } @phdthesis{Hoffmann2019, author = {Hoffmann, Mathias}, title = {Improving measurement and modelling approaches of the closed chamber method to better assess dynamics and drivers of carbon based greenhouse gas emissions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421302}, school = {Universit{\"a}t Potsdam}, pages = {xx, 204, xxix}, year = {2019}, abstract = {The trace gases CO2 and CH4 pertain to the most relevant greenhouse gases and are important exchange fluxes of the global carbon (C) cycle. Their atmospheric quantity increased significantly as a result of the intensification of anthropogenic activities, such as especially land-use and land-use change, since the mid of the 18th century. To mitigate global climate change and ensure food security, land-use systems need to be developed, which favor reduced trace gas emissions and a sustainable soil carbon management. This requires the accurate and precise quantification of the influence of land-use and land-use change on CO2 and CH4 emissions. A common method to determine the trace gas dynamics and C sink or source function of a particular ecosystem is the closed chamber method. This method is often used assuming that accuracy and precision are high enough to determine differences in C gas emissions for e.g., treatment comparisons or different ecosystem components. However, the broad range of different chamber designs, related operational procedures and data-processing strategies which are described in the scientific literature contribute to the overall uncertainty of closed chamber-based emission estimates. Hence, the outcomes of meta-analyses are limited, since these methodical differences hamper the comparability between studies. Thus, a standardization of closed chamber data acquisition and processing is much-needed. Within this thesis, a set of case studies were performed to: (I) develop standardized routines for an unbiased data acquisition and processing, with the aim of providing traceable, reproducible and comparable closed chamber based C emission estimates; (II) validate those routines by comparing C emissions derived using closed chambers with independent C emission estimates; and (III) reveal processes driving the spatio-temporal dynamics of C emissions by developing (data processing based) flux separation approaches. The case studies showed: (I) the importance to test chamber designs under field conditions for an appropriate sealing integrity and to ensure an unbiased flux measurement. Compared to the sealing integrity, the use of a pressure vent and fan was of minor importance, affecting mainly measurement precision; (II) that the developed standardized data processing routines proved to be a powerful and flexible tool to estimate C gas emissions and that this tool can be successfully applied on a broad range of flux data sets from very different ecosystem; (III) that automatic chamber measurements display temporal dynamics of CO2 and CH4 fluxes very well and most importantly, that they accurately detect small-scale spatial differences in the development of soil C when validated against repeated soil inventories; and (IV) that a simple algorithm to separate CH4 fluxes into ebullition and diffusion improves the identification of environmental drivers, which allows for an accurate gap-filling of measured CH4 fluxes. Overall, the proposed standardized data acquisition and processing routines strongly improved the detection accuracy and precision of source/sink patterns of gaseous C emissions. Hence, future studies, which consider the recommended improvements, will deliver valuable new data and insights to broaden our understanding of spatio-temporal C gas dynamics, their particular environmental drivers and underlying processes.}, language = {en} } @phdthesis{Korges2019, author = {Korges, Maximilian}, title = {Constraining the hydrology of intrusion-related ore deposits with fluid inclusions and numerical modeling}, doi = {10.25932/publishup-43484}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434843}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 99}, year = {2019}, abstract = {Magmatic-hydrothermal fluids are responsible for numerous mineralization types, including porphyry copper and granite related tin-tungsten (Sn-W) deposits. Ore formation is dependent on various factors, including, the pressure and temperature regime of the intrusions, the chemical composition of the magma and hydrothermal fluids, and fluid rock interaction during the ascent. Fluid inclusions have potential to provide direct information on the temperature, salinity, pressure and chemical composition of fluids responsible for ore formation. Numerical modeling allows the parametrization of pluton features that cannot be analyzed directly via geological observations. Microthermometry of fluid inclusions from the Zinnwald Sn-W deposit, Erzgebirge, Germany / Czech Republic, provide evidence that the greisen mineralization is associated with a low salinity (2-10 wt.\% NaCl eq.) fluid with homogenization temperatures between 350°C and 400°C. Quartzes from numerous veins are host to inclusions with the same temperatures and salinities, whereas cassiterite- and wolframite-hosted assemblages with slightly lower temperatures (around 350°C) and higher salinities (ca. 15 wt. NaCl eq.). Further, rare quartz samples contained boiling assemblages consisting of coexisting brine and vapor phases. The formation of ore minerals within the greisen is driven by invasive fluid-rock interaction, resulting in the loss of complexing agents (Cl-) leading to precipitation of cassiterite. The fluid inclusion record in the veins suggests boiling as the main reason for cassiterite and wolframite mineralization. Ore and coexisting gangue minerals hosted different types of fluid inclusions where the beginning boiling processes are solely preserved by the ore minerals emphasizing the importance of microthermometry in ore minerals. Further, the study indicates that boiling as a precipitation mechanism can only occur in mineralization related to shallow intrusions whereas deeper plutons prevent the fluid from boiling and can therefore form tungsten mineralization in the distal regions. The tin mineralization in the H{\"a}mmerlein deposit, Erzgebirge, Germany, occurs within a skarn horizon and the underlying schist. Cassiterite within the skarn contains highly saline (30-50 wt\% NaCl eq.) fluid inclusions, with homogenization temperatures up to 500°C, whereas cassiterites from the schist and additional greisen samples contain inclusions of lower salinity (~5 wt\% NaCl eq.) and temperature (between 350 and 400°C). Inclusions in the gangue minerals (quartz, fluorite) preserve homogenization temperatures below 350°C and sphalerite showed the lowest homogenization temperatures (ca. 200°C) whereby all minerals (cassiterite from schist and greisen, gangue minerals and sphalerite) show similar salinity ranges (2-5 wt\% NaCl eq.). Similar trace element contents and linear trends in the chemistry of the inclusions suggest a common source fluid. The inclusion record in the H{\"a}mmerlein deposit documents an early exsolution of hot brines from the underlying granite which is responsible for the mineralization hosted by the skarn. Cassiterites in schist and greisen are mainly forming due to fluid-rock interaction at lower temperatures. The low temperature inclusions documented in the sphalerite mineralization as well as their generally low trace element composition in comparison to the other minerals suggests that their formation was induced by mixing with meteoric fluids. Numerical simulations of magma chambers and overlying copper distribution document the importance of incremental growth by sills. We analyzed the cooling behavior at variable injection intervals as well as sill thicknesses. The models suggest that magma accumulation requires volumetric injection rates of at least 4 x 10-4 km³/y. These injection rates are further needed to form a stable magmatic-hydrothermal fluid plume above the magma chamber to ensure a constant copper precipitation and enrichment within a confined location in order to form high-grade ore shells within a narrow geological timeframe between 50 and 100 kyrs as suggested for porphyry copper deposits. The highest copper enrichment can be found in regions with steep temperature gradients, typical of regions where the magmatic-hydrothermal fluid meets the cooler ambient fluids.}, language = {en} } @phdthesis{Kriegerowski2019, author = {Kriegerowski, Marius}, title = {Development of waveform-based, automatic analysis tools for the spatio-temporal characterization of massive earthquake clusters and swarms}, doi = {10.25932/publishup-44404}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444040}, school = {Universit{\"a}t Potsdam}, pages = {xv, 83}, year = {2019}, abstract = {Earthquake swarms are characterized by large numbers of events occurring in a short period of time within a confined source volume and without significant mainshock aftershock pattern as opposed to tectonic sequences. Intraplate swarms in the absence of active volcanism usually occur in continental rifts as for example in the Eger Rift zone in North West Bohemia, Czech Republic. A common hypothesis links event triggering to pressurized fluids. However, the exact causal chain is often poorly understood since the underlying geotectonic processes are slow compared to tectonic sequences. The high event rate during active periods challenges standard seismological routines as these are often designed for single events and therefore costly in terms of human resources when working with phase picks or computationally costly when exploiting full waveforms. This methodological thesis develops new approaches to analyze earthquake swarm seismicity as well as the underlying seismogenic volume. It focuses on the region of North West (NW) Bohemia, a well studied, well monitored earthquake swarm region. In this work I develop and test an innovative approach to detect and locate earthquakes using deep convolutional neural networks. This technology offers great potential as it allows to efficiently process large amounts of data which becomes increasingly important given that seismological data storage grows at increasing pace. The proposed deep neural network trained on NW Bohemian earthquake swarm records is able to locate 1000 events in less than 1 second using full waveforms while approaching precision of double difference relocated catalogs. A further technological novelty is that the trained filters of the deep neural network's first layer can be repurposed to function as a pattern matching event detector without additional training on noise datasets. For further methodological development and benchmarking, I present a new toolbox to generate realistic earthquake cluster catalogs as well as synthetic full waveforms of those clusters in an automated fashion. The input is parameterized using constraints on source volume geometry, nucleation and frequency-magnitude relations. It harnesses recorded noise to produce highly realistic synthetic data for benchmarking and development. This tool is used to study and assess detection performance in terms of magnitude of completeness Mc of a full waveform detector applied to synthetic data of a hydrofracturing experiment at the Wysin site, Poland. Finally, I present and demonstrate a novel approach to overcome the masking effects of wave propagation between earthquake and stations and to determine source volume attenuation directly in the source volume where clustered earthquakes occur. The new event couple spectral ratio approach exploits high frequency spectral slopes of two events sharing the greater part of their rays. Synthetic tests based on the toolbox mentioned before show that this method is able to infer seismic wave attenuation within the source volume at high spatial resolution. Furthermore, it is independent from the distance towards a station as well as the complexity of the attenuation and velocity structure outside of the source volume of swarms. The application to recordings of the NW Bohemian earthquake swarm shows increased P phase attenuation within the source volume (Qp < 100) based on results at a station located close to the village Luby (LBC). The recordings of a station located in epicentral proximity, close to Nov{\´y} Kostel (NKC), show a relatively high complexity indicating that waves arriving at that station experience more scattering than signals recorded at other stations. The high level of complexity destabilizes the inversion. Therefore, the Q estimate at NKC is not reliable and an independent proof of the high attenuation finding given the geometrical and frequency constraints is still to be done. However, a high attenuation in the source volume of NW Bohemian swarms has been postulated before in relation to an expected, highly damaged zone bearing CO 2 at high pressure. The methods developed in the course of this thesis yield the potential to improve our understanding regarding the role of fluids and gases in intraplate event clustering.}, language = {en} } @misc{KaempfPlessenLauterbachetal.2019, author = {K{\"a}mpf, Lucas and Plessen, Birgit and Lauterbach, Stefan and Nantke, Carla and Meyer, Hanno and Chapligin, Bernhard and Brauer, Achim}, title = {Stable oxygen and carbon isotopes of carbonates in lake sediments as a paleoflood proxy}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-55000}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550004}, pages = {7}, year = {2019}, abstract = {Lake sediments are increasingly explored as reliable paleoflood archives. In addition to established flood proxies including detrital layer thickness, chemical composition, and grain size, we explore stable oxygen and carbon isotope data as paleoflood proxies for lakes in catchments with carbonate bedrock geology. In a case study from Lake Mondsee (Austria), we integrate high-resolution sediment trapping at a proximal and a distal location and stable isotope analyses of varved lake sediments to investigate flood-triggered detrital sediment flux. First, we demonstrate a relation between runoff, detrital sediment flux, and isotope values in the sediment trap record covering the period 2011-2013 CE including 22 events with daily (hourly) peak runoff ranging from 10 (24) m(3) s(-1) to 79 (110) m(3) s(-1). The three- to ten-fold lower flood-triggered detrital sediment deposition in the distal trap is well reflected by attenuated peaks in the stable isotope values of trapped sediments. Next, we show that all nine flood-triggered detrital layers deposited in a sediment record from 1988 to 2013 have elevated isotope values compared with endogenic calcite. In addition, even two runoff events that did not cause the deposition of visible detrital layers are distinguished by higher isotope values. Empirical thresholds in the isotope data allow estimation of magnitudes of the majority of floods, although in some cases flood magnitudes are overestimated because local effects can result in too-high isotope values. Hence we present a proof of concept for stable isotopes as reliable tool for reconstructing flood frequency and, although with some limitations, even for flood magnitudes.}, language = {en} } @phdthesis{Laudan2019, author = {Laudan, Jonas}, title = {Changing susceptibility of flood-prone residents in Germany}, doi = {10.25932/publishup-43442}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434421}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2019}, abstract = {Floods are among the most costly natural hazards that affect Europe and Germany, demanding a continuous adaptation of flood risk management. While social and economic development in recent years altered the flood risk patterns mainly with regard to an increase in flood exposure, different flood events are further expected to increase in frequency and severity in certain European regions due to climate change. As a result of recent major flood events in Germany, the German flood risk management shifted to more integrated approaches that include private precaution and preparation to reduce the damage on exposed assets. Yet, detailed insights into the preparedness decisions of flood-prone households remain scarce, especially in connection to mental impacts and individual coping strategies after being affected by different flood types. This thesis aims to gain insights into flash floods as a costly hazard in certain German regions and compares the damage driving factors to the damage driving factors of river floods. Furthermore, psychological impacts as well as the effects on coping and mitigation behaviour of flood-affected households are assessed. In this context, psychological models such as the Protection Motivation Theory (PMT) and methods such as regressions and Bayesian statistics are used to evaluate influencing factors on the mental coping after an event and to identify psychological variables that are connected to intended private flood mitigation. The database consists of surveys that were conducted among affected households after major river floods in 2013 and flash floods in 2016. The main conclusions that can be drawn from this thesis reveal that the damage patterns and damage driving factors of strong flash floods differ significantly from those of river floods due to a rapid flow origination process, higher flow velocities and flow forces. However, the effects on mental coping of people that have been affected by flood events appear to be weakly influenced by different flood types, but yet show a coherence to the event severity, where often thinking of the respective event is pronounced and also connected to a higher mitigation motivation. The mental coping and preparation after floods is further influenced by a good information provision and a social environment, which encourages a positive attitude towards private mitigation. As an overall recommendation, approaches for an integrated flood risk management in Germany should be followed that also take flash floods into account and consider psychological characteristics of affected households to support and promote private flood mitigation. Targeted information campaigns that concern coping options and discuss current flood risks are important to better prepare for future flood hazards in Germany.}, language = {en} } @phdthesis{Lefebvre2019, author = {Lefebvre, Marie G.}, title = {Two stages of skarn formation - two tin enrichments}, doi = {10.25932/publishup-42717}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427178}, school = {Universit{\"a}t Potsdam}, pages = {87}, year = {2019}, abstract = {Skarn deposits are found on every continents and were formed at different times from Precambrian to Tertiary. Typically, the formation of a skarn is induced by a granitic intrusion in carbonates-rich sedimentary rocks. During contact metamorphism, fluids derived from the granite interact with the sedimentary host rocks, which results in the formation of calc-silicate minerals at the expense of carbonates. Those newly formed minerals generally develop in a metamorphic zoned aureole with garnet in the proximal and pyroxene in the distal zone. Ore elements contained in magmatic fluids are precipitated due to the change in fluid composition. The temperature decrease of the entire system, due to the cooling of magmatic fluids and the entering of meteoric water, allows retrogression of some prograde minerals. The H{\"a}mmerlein skarn deposit has a multi-stage history with a skarn formation during regional metamorphism and a retrogression of primary skarn minerals during the granitic intrusion. Tin was mobilized during both events. The 340 Ma old tin-bearing skarn minerals show that tin was present in sediments before the granite intrusion, and that the first Sn enrichment occurred during the skarn formation by regional metamorphism fluids. In a second step at ca. 320 Ma, tin-bearing fluids were produced with the intrusion of the Eibenstock granite. Tin, which has been added by the granite and remobilized from skarn calc-silicates, precipitated as cassiterite. Compared to clay or marl, the skarn is enriched in Sn, W, In, Zn, and Cu. These metals have been supplied during both regional metamorphism and granite emplacement. In addition, the several isotopic and chemical data of skarn samples show that the granite selectively added elements such as Sn, and that there was no visible granitic contribution to the sedimentary signature of the skarn The example of H{\"a}mmerlein shows that it is possible to form a tin-rich skarn without associated granite when tin has already been transported from tin-bearing sediments during regional metamorphism by aqueous metamorphic fluids. These skarns are economically not interesting if tin is only contained in the skarn minerals. Later alteration of the skarn (the heat and fluid source is not necessarily a granite), however, can lead to the formation of secondary cassiterite (SnO2), with which the skarn can become economically highly interesting.}, language = {en} } @phdthesis{Liu2019, author = {Liu, Jiabo}, title = {Dynamics of the geomagnetic field during the last glacial}, doi = {10.25932/publishup-42946}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429461}, school = {Universit{\"a}t Potsdam}, pages = {xv, 158}, year = {2019}, abstract = {Geomagnetic paleosecular variations (PSVs) are an expression of geodynamo processes inside the Earth's liquid outer core. These paleomagnetic time series provide insights into the properties of the Earth's magnetic field, from normal behavior with a dominating dipolar geometry, over field crises, such as pronounced intensity lows and geomagnetic excursions with a distorted field geometry, to the complete reversal of the dominating dipole contribution. Particularly, long-term high-resolution and high-quality PSV time series are needed for properly reconstructing the higher frequency components in the spectrum of geomagnetic field variations and for a better understanding of the effects of smoothing during the recording of such paleomagnetic records by sedimentary archives. In this doctorate study, full vector paleomagnetic records were derived from 16 sediment cores recovered from the southeastern Black Sea. Age models are based on radiocarbon dating and correlations of warming/cooling cycles monitored by high-resolution X-ray fluorescence (XRF) elementary ratios as well as ice-rafted debris (IRD) in Black Sea sediments to the sequence of 'Dansgaard-Oeschger' (DO) events defined from Greenland ice core oxygen isotope stratigraphy. In order to identify the carriers of magnetization in Black Sea sediments, core MSM33-55-1 recovered from the southeast Black Sea was subjected to detailed rock magnetic and electron microscopy investigations. The younger part of core MSM33-55-1 was continuously deposited since 41 ka. Before 17.5 ka, the magnetic minerals were dominated by a mixture of greigite (Fe3S4) and titanomagnetite (Fe3-xTixO4) in samples with SIRM/κLF >10 kAm-1, or exclusively by titanomagnetite in samples with SIRM/κLF ≤10 kAm-1. It was found that greigite is generally present as crustal aggregates in locally reducing micro-environments. From 17.5 ka to 8.3 ka, the dominant magnetic mineral in this transition phase was changing from greigite (17.5 - ~10.0 ka) to probably silicate-hosted titanomagnetite (~10.0 - 8.3 ka). After 8.3 ka, the anoxic Black Sea was a favorable environment for the formation of non-magnetic pyrite (FeS2) framboids. Aiming to avoid compromising of paleomagnetic data by erroneous directions carried by greigite, paleomagnetic data from samples with SIRM/κLF >10 kAm-1, shown to contain greigite by various methods, were removed from obtained records. Consequently, full vector paleomagnetic records, comprising directional data and relative paleointensity (rPI), were derived only from samples with SIRM/κLF ≤10 kAm-1 from 16 Black Sea sediment cores. The obtained data sets were used to create a stack covering the time window between 68.9 and 14.5 ka with temporal resolution between 40 and 100 years, depending on sedimentation rates. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I=61°, D=0°) still can not yet be termed as 'excursional', since latitudes of corresponding VGPs only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of the Norwegian-Greenland Sea excursion found at several sites much further North in Arctic marine sediments between 69°N and 81°N. At about 34.5 ka, the Mono Lake excursion is evidenced in the stacked Black Sea PSV record by both a rPI minimum and directional shifts. Associated VGPs from stacked Black Sea data migrated from Alaska, via central Asia and the Tibetan Plateau, to Greenland, performing a clockwise loop. This agrees with data recorded in the Wilson Creek Formation, USA., and Arctic sediment core PS2644-5 from the Iceland Sea, suggesting a dominant dipole field. On the other hand, the Auckland lava flows, New Zealand, the Summer Lake, USA., and Arctic sediment core from ODP Site-919 yield distinct VGPs located in the central Pacific Ocean due to a presumably non-dipole (multi-pole) field configuration. A directional anomaly at 18.5 ka, associated with pronounced swings in inclination and declination, as well as a low in rPI, is probably contemporaneous with the Hilina Pali excursion, originally reported from Hawaiian lava flows. However, virtual geomagnetic poles (VGPs) calculated from Black Sea sediments are not located at latitudes lower than 60° N, which denotes normal, though pronounced secular variations. During the postulated Hilina Pali excursion, the VGPs calculated from Black Sea data migrated clockwise only along the coasts of the Arctic Ocean from NE Canada (20.0 ka), via Alaska (18.6 ka) and NE Siberia (18.0 ka) to Svalbard (17.0 ka), then looping clockwise through the Eastern Arctic Ocean. In addition to the Mono Lake and the Norwegian-Greenland Sea excursions, the Laschamp excursion was evidenced in the Black Sea PSV record with the lowest paleointensities at about 41.6 ka and a short-term (~500 years) full reversal centered at 41 ka. These excursions are further evidenced by an abnormal PSV index, though only the Laschamp and the Mono Lake excursions exhibit excursional VGP positions. The stacked Black Sea paleomagnetic record was also converted into one component parallel to the direction expected from a geocentric axial dipole (GAD) and two components perpendicular to it, representing only non-GAD components of the geomagnetic field. The Laschamp and the Norwegian-Greenland Sea excursions are characterized by extremely low GAD components, while the Mono Lake excursion is marked by large non-GAD contributions. Notably, negative values of the GAD component, indicating a fully reversed geomagnetic field, are observed only during the Laschamp excursion. In summary, this doctoral thesis reconstructed high-resolution and high-fidelity PSV records from SE Black Sea sediments. The obtained record comprises three geomagnetic excursions, the Norwegian-Greenland Sea excursion, the Laschamp excursion, and the Mono Lake excursion. They are characterized by abnormal secular variations of different amplitudes centered at about 64.5 ka, 41.0 ka and 34.5 ka, respectively. In addition, the obtained PSV record from the Black Sea do not provide evidence for the postulated 'Hilina Pali excursion' at about 18.5 ka. Anyway, the obtained Black Sea paleomagnetic record, covering field fluctuations from normal secular variations, over excursions, to a short but full reversal, points to a geomagnetic field characterized by a large dynamic range in intensity and a highly variable superposition of dipole and non-dipole contributions from the geodynamo during the past 68.9 to 14.5 ka.}, language = {en} } @phdthesis{Maerz2019, author = {Maerz, Sven}, title = {Analyzing pore systems through comprehensive digital image analysis (DIA)}, doi = {10.25932/publishup-44588}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445880}, school = {Universit{\"a}t Potsdam}, pages = {xii, 107, xxi}, year = {2019}, abstract = {Carbonates tend to have complex pore systems which are often composed of distinct assemblages of genetically and geometrically different pore types at various scales (e.g., Melim et al., 2001; Lee et al., 2009; He et al., 2014; Dernaika \& Sinclair, 2017; Zhang et al., 2017). Such carbonate-typical multimodal pore systems are the result of both primary depositional processes and multiple stages of postdepositional modifications, causing small-scale heterogeneities in pore system properties and leading to the co-occurrence of both effective and ineffective pore types. These intrinsic variations in pore type effectiveness are the main reason for the often low correlation between porosity and permeability in carbonate pore systems (e.g., Mazzullo 2004; Ehrenberg \& Nadeau, 2005; Hollis et al., 2010; He et al., 2014; Rashid et al., 2015; Dernaika \& Sinclair, 2017), as it is also true for the marginal lacustrine carbonates studied in this thesis. However, by extracting interconnected and thus effective pore types, and simultaneously excluding isolated and ineffective pores, the understanding and prediction of permeability for given porosity can be highly enhanced (e.g., Melim et al., 2001; Zhang et al., 2017). In this thesis, a step-by-step workflow based on digital image analysis (DIA) is presented and performed on 32 facies-representative samples of marginal lacustrine carbonates from the Middle Miocene N{\"o}rdlinger Ries crater lake (Southern Germany), resulting in 77 mean values of pore type effectiveness which are based on 23,508 individual pore geometry data. By using pore shape factor γ (sensu Anselmetti et al., 1998) as a parameter to quantitatively describe pore shape complexity and therefore pore interconnectivity, the potential contribution (Kcontr.) of each pore type to total permeability (Ktotal) is calculated, and the most effective pore types are then identified. As a result, primary interpeloidal pores and secondary vugs are the most effective pore types in the studied marginal lacustrine succession, mainly due to their generally big size and complex shape, leading to an excellent interconnection between both pore types and consequently to the establishment of a highly effective pore network. Both pore types together compose the pore system of the peloidal grainstone facies. Therefore, this lithofacies type has been identified as the sedimentary facies with highest porosity-permeability properties in this marginal lacustrine succession. By applying the DIA-based method to 23 additional samples from the studied outcrop which all show extensive partial to complete cementation of preexisting pores, the impact of cementation on pore geometry and therefore on porosity and permeability is quantified. This results in a cementation reduction value for each relevant parameter which can then be used to enhance precision of predicting porosity and permeability within the studied succession. Furthermore, the concept of using pore shape complexity as a proxy parameter for pore system effectiveness is tested by applying an independent method (i.e., fluid flow simulation) to the dataset. DIA is then used once again to evaluate the outcome of fluid flow simulation. The results confirm the previous findings that interpeloidal pores and vugs together build up the most effective pore system in the Ries lake carbonates. Finally, the extraction of the interconnected (i.e., effective) pore network leads to an improved correlation between porosity and permeability within the studied carbonates. The step-by-step workflow described in this thesis provides a quantitative petrographic method to identify and extract effective porosity from the pore system, which is crucial for understanding how carbonate pore systems generate permeability. This thesis also demonstrates that pore shape complexity is the most important geometrical parameter controlling pore interconnection and consequently the formation of effective porosity. It further emphasizes that pore shape factor γ (sensu Anselmetti et al. 1998) is a very robust and scale-independent proxy parameter to quantify pore type effectiveness. Additionally, DIA proves to be an ideal tool to directly link porosity and permeability to their mutual origin: the rock fabric and associated pore structure.}, language = {de} }