@phdthesis{Borghini2020, author = {Borghini, Alessia}, title = {Melt inclusions in mafic rocks as witnesses of metasomatism in the Bohemian Massif}, doi = {10.25932/publishup-47363}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473639}, school = {Universit{\"a}t Potsdam}, pages = {205}, year = {2020}, abstract = {Orogenic peridotites represent portions of upper subcontinental mantle now incorporated in mountain belts. They often contain layers, lenses and irregular bodies of pyroxenite and eclogite. The origin of this heterogeneity and the nature of these layers is still debated but it is likely to involve processes such as transient melts coming from the crust or the mantle and segregating in magma conduits, crust-mantle interaction, upwelling of the asthenosphere and metasomatism. All these processes occur in the lithospheric mantle and are often related with the subduction of crustal rocks to mantle depths. In fact, during subduction, fluids and melts are released from the slab and can interact with the overlying mantle, making the study of deep melts in this environment crucial to understand mantle heterogeneity and crust-mantle interaction. The aim of this thesis is precisely to better constrain how such processes take place studying directly the melt trapped as primary inclusions in pyroxenites and eclogites. The Bohemian Massif, crystalline core of the Variscan belt, is targeted for these purposes because it contains orogenic peridotites with layers of pyroxenite and eclogite and other mafic rocks enclosed in felsic high pressure and ultra-high pressure crustal rocks. Within this Massif mafic rocks from two areas have been selected: the garnet clinopyroxenite in orogenic peridotite of the Granulitgebirge and the ultra-high pressure eclogite in the diamond-bearing gneisses of the Erzgebirge. In both areas primary melt inclusions were recognized in the garnet, ranging in size between 2-25 µm and with different degrees of crystallization, from glassy to polycrystalline. They have been investigated with Micro Raman spectroscopy and EDS mapping and the mineral assemblage is kumdykolite, phlogopite, quartz, kokchetavite, phase with a main Raman peak at 430 cm-1, phase with a main Raman peak at 412 cm-1, white mica and calcite with some variability in relative abundance depending on the case study. In the Granulitgebirge osumilite and pyroxene are also present, whereas calcite is one of the main phases in the Erzgebirge. The presence of glass and the mineral assemblage in the nanogranitoids suggest that they were former droplets of melt trapped in the garnet while it was growing. Glassy inclusions and re-homogenized nanogranitoids show a silicate melt that is granitic, hydrous, high in alkalis and weakly peraluminous. The melt is also enriched in both case studies in Cs, Pb, Rb, U, Th, Li and B suggesting the involvement of crustal component, i.e. white mica (main carrier of Cs, Pb, Rb, Li and B), and a fluid (Cs, Th and U) in the melt producing reaction. The whole rock in both cases mainly consists of garnet and clinopyroxene with, in Erzgebirge samples, the additional presence of quartz both in the matrix and as a polycrystalline inclusion in the garnet. The latter is interpreted as a quartz pseudomorph after coesite and occurs in the same microstructural position as the melt inclusions. Both rock types show a crustal and subduction zone signature with garnet and clinopyroxene in equilibrium. Melt was likely present during the metamorphic peak of the rock, as it occurs in garnet. Our data suggest that the processes most likely responsible for the formation of the investigated rocks in both areas is a metasomatic reaction between a melt produced in the crust and mafic layers formerly located in the mantle wedge for the Granulitgebirge and in the subducted continental crust itself in the Erzgebirge. Thus metasomatism in the first case took place in the mantle overlying the slab, whereas in the second case metasomatism took place in the continental crust that already contained, before subduction, mafic layers. Moreover, the presence of former coesite in the same microstructural position of the melt inclusions in the Erzgebirge garnets suggest that metasomatism took place at ultra-high pressure conditions. Summarizing, in this thesis we provide new insights into the geodynamic evolution of the Bohemian Massif based on the study of melt inclusions in garnet in two different mafic rock types, combining the direct microstructural and geochemical investigation of the inclusions with the whole-rock and mineral geochemistry. We report for the first time data, directly extracted from natural rocks, on the metasomatic melt responsible for the metasomatism of several areas of the Bohemian Massif. Besides the two locations here investigated, belonging to the Saxothuringian Zone, a signature similar to the investigated melt is clearly visible in pyroxenite and peridotite of the T-7 borehole (again Saxothuringian Zone) and the durbachite suite located in the Moldanubian Zone.}, language = {en} } @phdthesis{KonradSchmolke2016, author = {Konrad-Schmolke, Matthias}, title = {Thermodynamic and geochemical modeling in metamorphic geology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101805}, school = {Universit{\"a}t Potsdam}, pages = {232}, year = {2016}, abstract = {Quantitative thermodynamic and geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to the oceanic realm. Thermodynamic calculations are used, for example, to get better insight into lithosphere dynamics, to constrain melting processes in crust and mantle as well as to study fluid-rock interaction. The development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams have greatly advanced our ability to model geodynamic processes from subduction to orogenesis. However, a well-known problem is that despite its broad application the use and interpretation of thermodynamic models applied to natural rocks is far from straightforward. For example, chemical disequilibrium and/or unknown rock properties, such as fluid activities, complicate the application of equilibrium thermodynamics. One major aspect of the publications presented in this Habilitationsschrift are new approaches to unravel dynamic and chemical histories of rocks that include applications to chemically open system behaviour. This approach is especially important in rocks that are affected by element fractionation due to fractional crystallisation and fluid loss during dehydration reactions. Furthermore, chemically open system behaviour has also to be considered for studying fluid-rock interaction processes and for extracting information from compositionally zoned metamorphic minerals. In this Habilitationsschrift several publications are presented where I incorporate such open system behaviour in the forward models by incrementing the calculations and considering changing reacting rock compositions during metamorphism. I apply thermodynamic forward modelling incorporating the effects of element fractionation in a variety of geodynamic and geochemical applications in order to better understand lithosphere dynamics and mass transfer in solid rocks. In three of the presented publications I combine thermodynamic forward models with trace element calculations in order to enlarge the application of geochemical numerical forward modeling. In these publications a combination of thermodynamic and trace element forward modeling is used to study and quantify processes in metamorphic petrology at spatial scales from µm to km. In the thermodynamic forward models I utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. One of the included publications shows that trace element growth zonations in metamorphic garnet porphyroblasts can be used to get crucial information about the reaction path of the investigated sample. In order to interpret the major and trace element distribution and zoning patterns in terms of the reaction history of the samples, we combined thermodynamic forward models with mass-balance rare earth element calculations. Such combined thermodynamic and mass-balance calculations of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. We can show in that paper that garnet growth and trace element incorporation occurred in near thermodynamic equilibrium with matrix phases during subduction and that the rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions. In two of the presented publications I illustrate the capacities of combined thermodynamic-geochemical modeling based on examples relevant to mass transfer in subduction zones. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab and associated transport of B and variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. I show that, combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In my publications presented in this Habilitationsschrift I compare the modeled results to geochemical data of natural minerals and rocks and demonstrate that the combination of thermodynamic and geochemical models enables quantification of metamorphic processes and insights into element cycling that would have been unattainable so far. Thus, the contributions to the science community presented in this Habilitatonsschrift concern the fields of petrology, geochemistry, geochronology but also ore geology that all use thermodynamic and geochemical models to solve various problems related to geo-materials.}, language = {en} }