@phdthesis{TchoumbaKwamen2018, author = {Tchoumba Kwamen, Christelle Larodia}, title = {Investigating the dynamics of polarization reversal in ferroelectric thin films by time-resolved X-ray diffraction}, doi = {10.25932/publishup-42781}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427815}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 126, xxiii}, year = {2018}, abstract = {Ferroic materials have attracted a lot of attention over the years due to their wide range of applications in sensors, actuators, and memory devices. Their technological applications originate from their unique properties such as ferroelectricity and piezoelectricity. In order to optimize these materials, it is necessary to understand the coupling between their nanoscale structure and transient response, which are related to the atomic structure of the unit cell. In this thesis, synchrotron X-ray diffraction is used to investigate the structure of ferroelectric thin film capacitors during application of a periodic electric field. Combining electrical measurements with time-resolved X-ray diffraction on a working device allows for visualization of the interplay between charge flow and structural motion. This constitutes the core of this work. The first part of this thesis discusses the electrical and structural dynamics of a ferroelectric Pt/Pb(Zr0.2,Ti0.8)O3/SrRuO3 heterostructure during charging, discharging, and polarization reversal. After polarization reversal a non-linear piezoelectric response develops on a much longer time scale than the RC time constant of the device. The reversal process is inhomogeneous and induces a transient disordered domain state. The structural dynamics under sub-coercive field conditions show that this disordered domain state can be remanent and can be erased with an appropriate voltage pulse sequence. The frequency-dependent dynamic characterization of a Pb(Zr0.52,Ti0.48)O3 layer, at the morphotropic phase boundary, shows that at high frequency, the limited domain wall velocity causes a phase lag between the applied field and both the structural and electrical responses. An external modification of the RC time constant of the measurement delays the switching current and widens the electromechanical hysteresis loop while achieving a higher compressive piezoelectric strain within the crystal. In the second part of this thesis, time-resolved reciprocal space maps of multiferroic BiFeO3 thin films were measured to identify the domain structure and investigate the development of an inhomogeneous piezoelectric response during the polarization reversal. The presence of 109° domains is evidenced by the splitting of the Bragg peak. The last part of this work investigates the effect of an optically excited ultrafast strain or heat pulse propagating through a ferroelectric BaTiO3 layer, where we observed an additional current response due to the laser pulse excitation of the metallic bottom electrode of the heterostructure.}, language = {en} } @phdthesis{vonNordheim2018, author = {von Nordheim, Danny}, title = {Dielectric non-linearities of P(VDF-TrFE) single and multilayers for memory applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421778}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 109}, year = {2018}, abstract = {Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric thin films of different molar ratio have been studied with regard to data memory applications. Therefore, films with thicknesses of 200 nm and less have been spin coated from solution. Observations gained from single layers have been extended to multilayer capacitors and three terminal transistor devices. Besides conventional hysteresis measurements, the measurement of dielectric non-linearities has been used as a main tool of characterisation. Being a very sensitive and non-destructive method, non-linearity measurements are well suited for polarisation readout and property studies. Samples have been excited using a high quality, single-frequency sinusoidal voltage with an amplitude significantly smaller than the coercive field of the samples. The response was then measured at the excitation frequency and its higher harmonics. Using the measurement results, the linear and non-linear dielectric permittivities ɛ₁, ɛ₂ and ɛ₃ have been determined. The permittivities have been used to derive the temperature-dependent polarisation behaviour as well as the polarisation state and the order of the phase transitions. The coercive field in VDF-TrFE copolymers is high if compared to their ceramic competitors. Therefore, the film thickness had to be reduced significantly. Considering a switching voltage of 5 V and a coercive field of 50 MV/m, the film thickness has to be 100 nm and below. If the thickness becomes substantially smaller than the other dimensions, surface and interface layer effects become more pronounced. For thicker films of P(VDF-TrFE) with a molar fraction of 56/44 a second-order phase transition without a thermal hysteresis for an ɛ₁(T) temperature cycle has been predicted and observed. This however, could not be confirmed by the measurements of thinner films. A shift of transition temperatures as well as a temperature independent, non-switchable polarisation and a thermal hysteresis for P(VDF-TrFE) 56/44 have been observed. The impact of static electric fields on the polarisation and the phase transition has therefore been studied and simulated, showing that all aforementioned phenomena including a linear temperature dependence of the polarisation might originate from intrinsic electric fields. In further experiments the knowledge gained from single layer capacitors has been extended to bilayer copolymer thin films of different molar composition. Bilayers have been deposited by succeeding cycles of spin coating from solution. Single layers and their bilayer combination have been studied individually in order to prove the layers stability. The individual layers have been found to be physically stable. But while the bilayers reproduced the main ɛ₁(T) properties of the single layers qualitatively, quantitative numbers could not be explained by a simple serial connection of capacitors. Furthermore, a linear behaviour of the polarisation throughout the measured temperature range has been observed. This was found to match the behaviour predicted considering a constant electric field. Retention time is an important quantity for memory applications. Hence, the retention behaviour of VDF-TrFE copolymer thin films has been determined using dielectric non-linearities. The polarisation loss in P(VDF-TrFE) poled samples has been found to be less than 20\% if recorded over several days. The loss increases significantly if the samples have been poled with lower amplitudes, causing an unsaturated polarisation. The main loss was attributed to injected charges. Additionally, measurements of dielectric non-linearities have been proven to be a sensitive and non-destructive tool to measure the retention behaviour. Finally, a ferroelectric field effect transistor using mainly organic materials (FerrOFET) has been successfully studied. DiNaphtho[2,3-b:2',3'-f]Thieno[3,2-b]Thiophene (DNTT) has proven to be a stable, suitable organic semiconductor to build up ferroelectric memory devices. Furthermore, an oxidised aluminium bottom electrode and additional dielectric layers, i.e. parylene C, have proven to reduce the leakage current and therefore enhance the performance significantly.}, language = {en} }