@misc{DwiPutraReichetzederHasanetal.2020, author = {Dwi Putra, Sulistyo Emantoko and Reichetzeder, Christoph and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Slowinski, Torsten and Chu, Chang and Kr{\"a}mer, Bernhard K. and Kleuser, Burkhard and Hocher, Berthold}, title = {Being born large for gestational age is associated with increased global placental DNA methylation}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51628}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516289}, pages = {12}, year = {2020}, abstract = {Being born small (SGA) or large for gestational age (LGA) is associated with adverse birth outcomes and metabolic diseases in later life of the offspring. It is known that aberrations in growth during gestation are related to altered placental function. Placental function is regulated by epigenetic mechanisms such as DNA methylation. Several studies in recent years have demonstrated associations between altered patterns of DNA methylation and adverse birth outcomes. However, larger studies that reliably investigated global DNA methylation are lacking. The aim of this study was to characterize global placental DNA methylation in relationship to size for gestational age. Global DNA methylation was assessed in 1023 placental samples by LC-MS/MS. LGA offspring displayed significantly higher global placental DNA methylation compared to appropriate for gestational age (AGA; p<0.001). ANCOVA analyses adjusted for known factors impacting on DNA methylation demonstrated an independent association between placental global DNA methylation and LGA births (p<0.001). Tertile stratification according to global placental DNA methylation levels revealed a significantly higher frequency of LGA births in the third tertile. Furthermore, a multiple logistic regression analysis corrected for known factors influencing birth weight highlighted an independent positive association between global placental DNA methylation and the frequency of LGA births (p=0.001).}, language = {en} } @misc{LangBohnBhatetal.2020, author = {Lang, Judith and Bohn, Patrick and Bhat, Hilal and Jastrow, Holger and Walkenfort, Bernd and Cansiz, Feyza and Fink, Julian and Bauer, Michael and Schumacher, Fabian and Kleuser, Burkhard and Lang, Karl S.}, title = {Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515661}, pages = {17}, year = {2020}, abstract = {Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1(-/-) mice results in replication of HSV-1 and Asah1(-/-) mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol.}, language = {en} } @misc{ZoicasSchumacherKleuseretal.2020, author = {Zoicas, Iulia and Schumacher, Fabian and Kleuser, Burkhard and Reichel, Martin and Gulbins, Erich and Fejtova, Anna and Kornhuber, Johannes and Rhein, Cosima}, title = {The forebrain-specific overexpression of acid sphingomyelinase induces depressive-like symptoms in mice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-52436}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524368}, pages = {14}, year = {2020}, abstract = {Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tg(fb)) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tg(fb) mice than in female Asm-tg(fb) mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tg(fb) mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression.}, language = {en} }