@misc{LevermannPetoukhovScheweetal.2016, author = {Levermann, Anders and Petoukhov, Vladimir and Schewe, Jacob and Schellnhuber, Hans Joachim}, title = {Abrupt monsoon transitions as seen in paleorecords can be explained by moisture-advection feedback}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {113}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1603130113}, pages = {E2348 -- E2349}, year = {2016}, language = {en} } @misc{BuergerMagdansGies2016, author = {B{\"u}rger, Andreas and Magdans, Uta and Gies, Hermann}, title = {Adsorption of amino acids on the magnetite-(111)-surface: a force field study (vol 19, 851, 2013)}, series = {Journal of molecular modeling}, volume = {22}, journal = {Journal of molecular modeling}, publisher = {Springer}, address = {New York}, issn = {1610-2940}, doi = {10.1007/s00894-016-3124-8}, pages = {3}, year = {2016}, language = {en} } @misc{TeifCherstvy2016, author = {Teif, Vladimir B. and Cherstvy, Andrey G.}, title = {Chromatin and epigenetics: current biophysical views}, series = {AIMS biophysics}, volume = {3}, journal = {AIMS biophysics}, publisher = {American Institute of Mathematical Sciences}, address = {Springfield}, issn = {2377-9098}, doi = {10.3934/biophy.2016.1.88}, pages = {88 -- 98}, year = {2016}, abstract = {Recent advances in high-throughput sequencing experiments and their theoretical descriptions have determined fast dynamics of the "chromatin and epigenetics" field, with new concepts appearing at high rate. This field includes but is not limited to the study of DNA-protein-RNA interactions, chromatin packing properties at different scales, regulation of gene expression and protein trafficking in the cell nucleus, binding site search in the crowded chromatin environment and modulation of physical interactions by covalent chemical modifications of the binding partners. The current special issue does not pretend for the full coverage of the field, but it rather aims to capture its development and provide a snapshot of the most recent concepts and approaches. Eighteen open-access articles comprising this issue provide a delicate balance between current theoretical and experimental biophysical approaches to uncover chromatin structure and understand epigenetic regulation, allowing free flow of new ideas and preliminary results.}, language = {en} } @misc{BerensteinBetaDeDecker2016, author = {Berenstein, Igal and Beta, Carsten and De Decker, Yannick}, title = {Comment on "Flow-induced arrest of spatiotemporal chaos and transition to a stationary pattern in the Gray-Scott model"}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {94}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.94.046201}, pages = {3}, year = {2016}, abstract = {In this Comment, we review the results of pattern formation in a reaction-diffusion-advection system following the kinetics of the Gray-Scott model. A recent paper by Das [Phys. Rev. E 92, 052914 (2015)] shows that spatiotemporal chaos of the intermittency type can disappear as the advective flow is increased. This study, however, refers to a single point in the space of kinetic parameters of the original Gray-Scott model. Here we show that the wealth of patterns increases substantially as some of these parameters are changed. In addition to spatiotemporal intermittency, defect-mediated turbulence can also be found. In all cases, however, the chaotic behavior is seen to disappear as the advective flow is increased, following a scenario similar to what was reported in our earlier work [I. Berenstein and C. Beta, Phys. Rev. E 86, 056205 (2012)] as well as by Das. We also point out that a similar phenomenon can be found in other reaction-diffusion-advection models, such as the Oregonator model for the Belousov-Zhabotinsky reaction under flow conditions.}, language = {en} } @misc{BattistonFarmerFlacheetal.2016, author = {Battiston, Stefano and Farmer, J. Doyne and Flache, Andreas and Garlaschelli, Diego and Haldane, Andrew G. and Heesterbeek, Hans and Hommes, Cars and Jaeger, Carlo and May, Robert and Scheffer, Marten}, title = {COMPLEX SYSTEMS Complexity theory and financial regulation}, series = {Science}, volume = {351}, journal = {Science}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aad0299}, pages = {818 -- 819}, year = {2016}, abstract = {Traditional economic theory could not explain, much less predict, the near collapse of the financial system and its long-lasting effects on the global economy. Since the 2008 crisis, there has been increasing interest in using ideas from complexity theory to make sense of economic and financial markets. Concepts, such as tipping points, networks, contagion, feedback, and resilience have entered the financial and regulatory lexicon, but actual use of complexity models and results remains at an early stage. Recent insights and techniques offer potential for better monitoring and management of highly interconnected economic and financial systems and, thus, may help anticipate and manage future crises.}, language = {en} } @misc{BattistonFarmerFlacheetal.2016, author = {Battiston, Stefano and Farmer, Doyne and Flache, Andreas and Garlaschelli, Diego and Haldane, Andy and Heesterbeek, Hans and Hommes, Cars and Jaeger, Carlo and May, Robert and Scheffer, Marten}, title = {Financial complexity: Accounting for fraud Response}, series = {Science}, volume = {352}, journal = {Science}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.352.6283.302}, pages = {302 -- 302}, year = {2016}, language = {en} } @misc{WuesthoffSohl2016, author = {Wuesthoff, Martin and Sohl, F.}, title = {Obliquity tides have an impact in diurnal tidal stresses on the Moon.}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {51}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1086-9379}, pages = {A672 -- A672}, year = {2016}, language = {en} } @misc{Oskinova2016, author = {Oskinova, Lida}, title = {Preface: X-ray emission from hot stars and their winds}, series = {Advances in space research}, volume = {58}, journal = {Advances in space research}, publisher = {Elsevier}, address = {Oxford}, issn = {0273-1177}, doi = {10.1016/j.asr.2016.06.031}, pages = {679 -- 679}, year = {2016}, language = {en} } @misc{Metzler2016, author = {Metzler, Ralf}, title = {PROTEIN PHYSICS Forever ageing}, series = {Nature physics}, volume = {12}, journal = {Nature physics}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, doi = {10.1038/nphys3585}, pages = {113 -- 114}, year = {2016}, abstract = {Single-molecule techniques have long given us insight into the motion and interactions of individual molecules. But simulations now show that the dynamics inside single proteins is not as simple as we thought — and that proteins are forever changing.}, language = {en} } @misc{BarniskeOskinovaHamann2016, author = {Barniske, Andreas and Oskinova, Lida and Hamann, Wolf-Rainer}, title = {Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas (vol 486, pg 971, 2008)}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {587}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/200809568e}, pages = {1}, year = {2016}, language = {en} }