@misc{SynodinosEldridgeGeissleretal.2018, author = {Synodinos, Alexios D. and Eldridge, David and Geißler, Katja and Jeltsch, Florian and Lohmann, Dirk and Midgley, Guy and Blaum, Niels}, title = {Remotely sensed canopy height reveals three pantropical ecosystem states}, series = {Ecology : a publication of the Ecological Society of America}, volume = {99}, journal = {Ecology : a publication of the Ecological Society of America}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9658}, doi = {10.1002/ecy.1997}, pages = {231 -- 234}, year = {2018}, language = {en} } @misc{AutenriethErnstDeavilleetal.2018, author = {Autenrieth, Marijke and Ernst, Anja and Deaville, Rob and Demaret, Fabien and Ijsseldijk, Lonneke L. and Siebert, Ursula and Tiedemann, Ralph}, title = {Putative origin and maternal relatedness of male sperm whales (Physeter macrocephalus) recently stranded in the North Sea}, series = {Mammalian biology = Zeitschrift f{\"u}r S{\"a}ugetierkunde}, volume = {88}, journal = {Mammalian biology = Zeitschrift f{\"u}r S{\"a}ugetierkunde}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {1616-5047}, doi = {10.1016/j.mambio.2017.09.003}, pages = {156 -- 160}, year = {2018}, abstract = {The globally distributed sperm whale (Physeter macrocephalus) has a partly matrilineal social structure with predominant male dispersal. At the beginning of 2016, a total of 30 male sperm whales stranded in five different countries bordering the southern North Sea. It has been postulated that these individuals were on a migration route from the north to warmer temperate and tropical waters where females live in social groups. By including samples from four countries (n = 27), this event provided a unique chance to genetically investigate the maternal relatedness and the putative origin of these temporally and spatially co-occuring male sperm whales. To utilize existing genetic resources, we sequenced 422 bp of the mitochondrial control region, a molecular marker for which sperm whale data are readily available from the entire distribution range. Based on four single nucleotide polymorphisms (SNPs) within the mitochondrial control region, five matrilines could be distinguished within the stranded specimens, four of which matched published haplotypes previously described in the Atlantic. Among these male sperm whales, multiple matrilineal lineages co-occur. We analyzed the population differentiation and could show that the genetic diversity of these male sperm whales is comparable to the genetic diversity in sperm whales from the entire Atlantic Ocean. We confirm that within this stranding event, males do not comprise maternally related individuals and apparently include assemblages of individuals from different geographic regions. (c) 2017 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @misc{WiegmannRutschmannWillemsen2018, author = {Wiegmann, Alex and Rutschmann, Ronja and Willemsen, Pascale}, title = {Correction to: Empirically Investigating the Concept of Lying (vol 34, pg 591, 2017)}, series = {Journal of Indian Council of Philosophical Research}, volume = {35}, journal = {Journal of Indian Council of Philosophical Research}, number = {1}, publisher = {Springer}, address = {New Dehli}, issn = {0970-7794}, doi = {10.1007/s40961-017-0123-9}, pages = {223 -- 223}, year = {2018}, language = {en} } @misc{HermanussenSchefflerGrothetal.2018, author = {Hermanussen, Michael and Scheffler, Christiane and Groth, Detlef and Bogin, Barry}, title = {Perceiving stunting - Student research and the "Lieschen Muller effect" in nutrition science}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {74}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0858}, pages = {355 -- 358}, year = {2018}, language = {en} } @misc{RudKaethnerGiesseretal.2018, author = {Rud, R. and K{\"a}thner, Jana and Giesser, J. and Pasche, R. and Giebel, Antje and Selbeck, J{\"o}rn and Shenderey, C. and Fleury, D. and Zude-Sasse, Manuela and Alchanatis, Victor}, title = {Monitoring spatial variability in an apple orchard under different water regimes}, series = {International Symposium on Sensing Plant Water Status - Methods and Applications in Horticultural Science}, volume = {1197}, journal = {International Symposium on Sensing Plant Water Status - Methods and Applications in Horticultural Science}, publisher = {International Society for Horticultural Science}, address = {The Hague}, isbn = {978-94-62611-93-1}, issn = {0567-7572}, doi = {10.17660/ActaHortic.2018.1197.19}, pages = {139 -- 146}, year = {2018}, abstract = {Precision fruticulture addresses site or tree-adapted crop management. In the present study, soil and tree status, as well as fruit quality at harvest were analysed in a commercial apple (Malus × domestica 'Gala Brookfield'/Pajam1) orchard in a temperate climate. Trees were irrigated in addition to precipitation. Three irrigation levels (0, 50 and 100\%) were applied. Measurements included readings of apparent electrical conductivity of soil (ECa), stem water potential, canopy temperature obtained by infrared camera, and canopy volume estimated by LiDAR and RGB colour imaging. Laboratory analyses of 6 trees per treatment were done on fruit considering the pigment contents and quality parameters. Midday stem water potential (SWP), normalized crop water stress index (CWSI) calculated from thermal data, and fruit yield and quality at harvest were analysed. Spatial patterns of the variability of tree water status were estimated by CWSI imaging supported by SWP readings. CWSI ranged from 0.1 to 0.7 indicating high variability due to irrigation and precipitation. Canopy volume data were less variable. Soil ECa appeared homogeneous in the range of 0 to 4 mS m-1. Fruit harvested in a drought stress zone showed enhanced portion of pheophytin in the chlorophyll pool. Irrigation affected soluble solids content and, hence, the quality of fruit. Overall, results highlighted that spatial variation in orchards can be found even if marginal variability of soil properties can be assumed.}, language = {en} } @misc{DunsingMagnusLiebschetal.2018, author = {Dunsing, Valentin and Magnus, Mayer and Liebsch, Filip and Multhaup, Gerhard and Chiantia, Salvatore}, title = {Direct Evidence of APLP1 Trans Interactions in Cell-Cell Adhesion Platforms Investigated via Fluorescence Fluctuation Spectroscopy}, series = {Biophysical journal}, volume = {114}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.2067}, pages = {373A -- 373A}, year = {2018}, abstract = {The Amyloid-precursor-like protein 1 (APLP1) is a neuronal type I transmembrane protein which plays a role in synaptic adhesion and synaptogenesis. Past investigations indicated that APLP1 is involved in the formation of protein-protein complexes that bridge the junctions between neighboring cells. Nevertheless, APLP1-APLP1 trans interactions have never been directly observed in higher eukaryotic cells. Here, we investigate APLP1 interactions and dynamics directly in living human embryonic kidney (HEK) cells, using fluorescence fluctuation spectroscopy techniques, namely cross-correlation scanning fluorescence correlation spectroscopy (sFCS) and Number\&Brightness (N\&B). Our results show that APLP1 forms homotypic trans complexes at cell-cell contacts. In the presence of zinc ions, the protein forms macroscopic clusters, exhibiting an even higher degree of trans binding and strongly reduced dynamics. Further evidence from Giant Plasma Membrane Vesicles and live cell actin staining suggests that the presence of an intact cortical cytoskeleton is required for zinc-induced cis multimerization. Subsequently, large adhesion platforms bridging interacting cells are formed through APLP1-APLP1 direct trans interactions. Taken together, our results provide direct evidence that APLP1 functions as a neuronal zinc-dependent adhesion protein and provide a more detailed understanding of the molecular mechanisms driving the formation of APLP1 adhesion platforms. Further, they show that fluorescence fluctuation spectroscopy techniques are useful tools for the investigation of protein-protein interactions at cell-cell adhesion sites.}, language = {en} } @misc{LucknerDunsingChiantiaetal.2018, author = {Luckner, Madlen and Dunsing, Valentin and Chiantia, Salvatore and Hermann, Andreas}, title = {Oligomerization and nuclear shuttling dynamics of viral proteins studied by quantitative molecular brightness analysis using fluorescence correlation spectroscopy}, series = {Biophysical journal}, volume = {114}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.1951}, pages = {350A -- 350A}, year = {2018}, language = {en} } @misc{DammhahnDingemanseNiemelaeetal.2018, author = {Dammhahn, Melanie and Dingemanse, Niels J. and Niemelae, Petri T. and Reale, Denis}, title = {Pace-of-life syndromes}, series = {Behavioral ecology and sociobiology}, volume = {72}, journal = {Behavioral ecology and sociobiology}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0340-5443}, doi = {10.1007/s00265-018-2473-y}, pages = {8}, year = {2018}, abstract = {This introduction to the topical collection on Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology, and life history provides an overview of conceptual, theoretical, methodological, and empirical progress in research on pace-of-life syndromes (POLSs) over the last decade. The topical collection has two main goals. First, we briefly describe the history of POLS research and provide a refined definition of POLS that is applicable to various key levels of variation (genetic, individual, population, species). Second, we summarise the main lessons learned from current POLS research included in this topical collection. Based on an assessment of the current state of the theoretical foundations and the empirical support of the POLS hypothesis, we propose (i) conceptual refinements of theory, particularly with respect to the role of ecology in the evolution of (sexual dimorphism in) POLS, and (ii) methodological and statistical approaches to the study of POLS at all major levels of variation. This topical collection further holds (iii) key empirical examples demonstrating how POLS structures may be studied in wild populations of (non) human animals, and (iv) a modelling paper predicting POLS under various ecological conditions. Future POLS research will profit from the development of more explicit theoretical models and stringent empirical tests of model assumptions and predictions, increased focus on how ecology shapes (sex-specific) POLS structures at multiple hierarchical levels, and the usage of appropriate statistical tests and study designs. Significance statement As an introduction to the topical collection, we summarise current conceptual, theoretical, methodological and empirical progress in research on pace-of-life syndromes (POLSs), a framework for the adaptive integration of behaviour, physiology and life history at multiple hierarchical levels of variation (genetic, individual, population, species). Mixed empirical support of POLSs, particularly at the within-species level, calls for an evaluation and refinement of the hypothesis. We provide a refined definition of POLSs facilitating testable predictions. Future research on POLSs will profit from the development of more explicit theoretical models and stringent empirical tests of model assumptions and predictions, increased focus on how ecology shapes (sex-specific) POLSs structures at multiple hierarchical levels and the usage of appropriate statistical tests and study designs.}, language = {en} } @misc{HiggsHarrisHegeretal.2018, author = {Higgs, Eric S. and Harris, Jim A. and Heger, Tina and Hobbs, Richard J. and Murphy, Stephen D. and Suding, Katharine N.}, title = {Keep ecological restoration open and flexible}, series = {Nature Ecology \& Evolution}, volume = {2}, journal = {Nature Ecology \& Evolution}, number = {4}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-018-0483-9}, pages = {580 -- 580}, year = {2018}, language = {en} } @misc{BestZhengBorgiaetal.2018, author = {Best, Robert B. and Zheng, Wenwei and Borgia, Alessandro and Buholzer, Karin and Borgia, Madeleine B. and Hofmann, Hagen and Soranno, Andrea and Nettels, Daniel and Gast, Klaus and Grishaev, Alexander and Schuler, Benjamin}, title = {Comment on "Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water"}, series = {Science}, volume = {361}, journal = {Science}, number = {6405}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aar7101}, pages = {2}, year = {2018}, abstract = {Riback et al. (Reports, 13 October 2017, p. 238) used small-angle x-ray scattering (SAXS) experiments to infer a degree of compaction for unfolded proteins in water versus chemical denaturant that is highly consistent with the results from Forster resonance energy transfer (FRET) experiments. There is thus no "contradiction" between the two methods, nor evidence to support their claim that commonly used FRET fluorophores cause protein compaction.}, language = {en} } @misc{SicardLenhard2018, author = {Sicard, Adrien and Lenhard, Michael}, title = {Capsella}, series = {Current biology}, volume = {28}, journal = {Current biology}, number = {17}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2018.06.033}, pages = {R920 -- R921}, year = {2018}, language = {en} } @misc{AlbersUestuenWitzeletal.2018, author = {Albers, Philip and Uestuen, Suayib and Witzel, Katja and Bornke, Frederik}, title = {Identification of a novel target of the bacterial effector HopZ1a}, series = {Phytopathology}, volume = {108}, journal = {Phytopathology}, number = {10}, publisher = {American Phytopathological Society}, address = {Saint Paul}, issn = {0031-949X}, pages = {1}, year = {2018}, abstract = {The plant pathogen Pseudomonas syringae is a gram-negative bacterium which infects a wide range of plant species including important crops plants. To suppress plant immunity and cause disease P.syringae injects type-III effector proteins (T3Es) into the plant cell cytosol. In this study, we identified a novel target of the well characterized bacterial T3E HopZ1a. HopZ1a is an acetyltransferase that was shown to disrupt vesicle transport during innate immunity by acetylating tubulin. Using a yeast-two-hybrid screen approach, we identified a REMORIN (REM) protein from tobacco as a novel HopZ1a target. HopZ1a interacts with REM at the plasma membrane (PM) as shown by split-YFP experiments. Interestingly, we found that PBS1, a well-known kinase involved in plant immunity also interacts with REM in pull-down assays, and at the PM as shown by BiFC. Furthermore, we confirmed that REM is phosphorylated by PBS1 in vitro. Overexpression of REM provokes the upregulation of defense genes and leads to disease-like phenotypes pointing to a role of REM in plant immune signaling. Further protein-protein interaction studies reveal novel REM binding partners with a possible role in plant immune signaling. Thus, REM might act as an assembly hub for an immune signaling complex targeted by HopZ1a. Taken together, this is the first report describing that a REM protein is targeted by a bacterial effector. How HopZ1a might mechanistically manipulate the plant immune system through interfering with REM function will be discussed.}, language = {en} } @misc{MesserschmidtMachensHochreinetal.2018, author = {Messerschmidt, Katrin and Machens, Fabian and Hochrein, Lena and Naseri, Gita}, title = {Orthogonal, light-inducible protein expression platform in yeast Sacchararomyces cerevisiae}, series = {New biotechnology}, volume = {44}, journal = {New biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1871-6784}, doi = {10.1016/j.nbt.2018.05.153}, pages = {S19 -- S19}, year = {2018}, language = {en} } @misc{Graef2018, author = {Gr{\"a}f, Ralph}, title = {Comparative Biology of Centrosomal Structures in Eukaryotes}, series = {Cells}, volume = {7}, journal = {Cells}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells7110202}, pages = {9}, year = {2018}, abstract = {The centrosome is not only the largest and most sophisticated protein complex within a eukaryotic cell, in the light of evolution, it is also one of its most ancient organelles. This special issue of "Cells" features representatives of three main, structurally divergent centrosome types, i.e., centriole-containing centrosomes, yeast spindle pole bodies (SPBs), and amoebozoan nucleus-associated bodies (NABs). Here, I discuss their evolution and their key-functions in microtubule organization, mitosis, and cytokinesis. Furthermore, I provide a brief history of centrosome research and highlight recently emerged topics, such as the role of centrioles in ciliogenesis, the relationship of centrosomes and centriolar satellites, the integration of centrosomal structures into the nuclear envelope and the involvement of centrosomal components in non-centrosomal microtubule organization.}, language = {en} } @misc{BalazadehMuellerRoeber2018, author = {Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd}, title = {A balance to death}, series = {Nature plants}, volume = {4}, journal = {Nature plants}, number = {11}, publisher = {Nature Publ. Group}, address = {London}, issn = {2055-026X}, doi = {10.1038/s41477-018-0279-6}, pages = {863 -- 864}, year = {2018}, abstract = {Leaf senescence plays a crucial role in nutrient recovery in late-stage plant development and requires vast transcriptional reprogramming by transcription factors such as ORESARA1 (ORE1). A proteolytic mechanism is now found to control ORE1 degradation, and thus senescence, during nitrogen starvation.}, language = {en} } @misc{BarlowShengLaietal.2018, author = {Barlow, Axel and Sheng, Gui-Lian and Lai, Xu-Long and Hofreiter, Michael and Paijmans, Johanna L. A.}, title = {Once lost, twice found: Combined analysis of ancient giant panda sequences characterises extinct clade}, series = {Journal of biogeography}, volume = {46}, journal = {Journal of biogeography}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.13486}, pages = {251 -- 253}, year = {2018}, language = {en} }