@misc{BockMatysikKrentzetal.2019, author = {Bock, Benedikt and Matysik, Jan-Tobias and Krentz, Konrad-Felix and Meinel, Christoph}, title = {Link Layer Key Revocation and Rekeying for the Adaptive Key Establishment Scheme}, series = {2019 IEEE 5TH World Forum on internet of things (WF-IOT)}, journal = {2019 IEEE 5TH World Forum on internet of things (WF-IOT)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-4980-0}, doi = {10.1109/WF-IoT.2019.8767211}, pages = {374 -- 379}, year = {2019}, abstract = {While the IEEE 802.15.4 radio standard has many features that meet the requirements of Internet of things applications, IEEE 802.15.4 leaves the whole issue of key management unstandardized. To address this gap, Krentz et al. proposed the Adaptive Key Establishment Scheme (AKES), which establishes session keys for use in IEEE 802.15.4 security. Yet, AKES does not cover all aspects of key management. In particular, AKES comprises no means for key revocation and rekeying. Moreover, existing protocols for key revocation and rekeying seem limited in various ways. In this paper, we hence propose a key revocation and rekeying protocol, which is designed to overcome various limitations of current protocols for key revocation and rekeying. For example, our protocol seems unique in that it routes around IEEE 802.15.4 nodes whose keys are being revoked. We successfully implemented and evaluated our protocol using the Contiki-NG operating system and aiocoap.}, language = {en} }