@unpublished{SchulzeTarkhanov1998, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Elliptic complexes of pseudodifferential operators on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25257}, year = {1998}, abstract = {On a compact closed manifold with edges live pseudodifferential operators which are block matrices of operators with additional edge conditions like boundary conditions in boundary value problems. They include Green, trace and potential operators along the edges, act in a kind of Sobolev spaces and form an algebra with a wealthy symbolic structure. We consider complexes of Fr{\´e}chet spaces whose differentials are given by operators in this algebra. Since the algebra in question is a microlocalization of the Lie algebra of typical vector fields on a manifold with edges, such complexes are of great geometric interest. In particular, the de Rham and Dolbeault complexes on manifolds with edges fit into this framework. To each complex there correspond two sequences of symbols, one of the two controls the interior ellipticity while the other sequence controls the ellipticity at the edges. The elliptic complexes prove to be Fredholm, i.e., have a finite-dimensional cohomology. Using specific tools in the algebra of pseudodifferential operators we develop a Hodge theory for elliptic complexes and outline a few applications thereof.}, language = {en} } @unpublished{SchulzeTarkhanov1998, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A Lefschetz fixed point formula in the relative elliptic theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25159}, year = {1998}, abstract = {A version of the classical Lefschetz fixed point formula is proved for the cohomology of the cone of a cochain mapping of elliptic complexes. As a particular case we show a Lefschetz formula for the relative de Rham cohomology.}, language = {en} }