@unpublished{AizenbergTarkhanov1999, author = {Aizenberg, Lev A. and Tarkhanov, Nikolai Nikolaevich}, title = {A Bohr phenomenon for elliptic equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25547}, year = {1999}, abstract = {In 1914 Bohr proved that there is an r ∈ (0, 1) such that if a power series converges in the unit disk and its sum has modulus less than 1 then, for |z| < r, the sum of absolute values of its terms is again less than 1. Recently analogous results were obtained for functions of several variables. The aim of this paper is to comprehend the theorem of Bohr in the context of solutions to second order elliptic equations meeting the maximum principle.}, language = {en} } @unpublished{AizenbergTarkhanov2005, author = {Aizenberg, Lev A. and Tarkhanov, Nikolai Nikolaevich}, title = {Stable expansions in homogeneous polynomials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29925}, year = {2005}, abstract = {An expansion for a class of functions is called stable if the partial sums are bounded uniformly in the class. Stable expansions are of key importance in numerical analysis where functions are given up to certain error. We show that expansions in homogeneous functions are always stable on a small ball around the origin, and evaluate the radius of the largest ball with this property.}, language = {en} } @unpublished{AlsaedyTarkhanov2013, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {Normally solvable nonlinear boundary value problems}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65077}, year = {2013}, abstract = {We study a boundary value problem for an overdetermined elliptic system of nonlinear first order differential equations with linear boundary operators. Such a problem is solvable for a small set of data, and so we pass to its variational formulation which consists in minimising the discrepancy. The Euler-Lagrange equations for the variational problem are far-reaching analogues of the classical Laplace equation. Within the framework of Euler-Lagrange equations we specify an operator on the boundary whose zero set consists precisely of those boundary data for which the initial problem is solvable. The construction of such operator has much in common with that of the familiar Dirichlet to Neumann operator. In the case of linear problems we establish complete results.}, language = {en} } @unpublished{BermanTarkhanov2004, author = {Berman, Gennady and Tarkhanov, Nikolai Nikolaevich}, title = {Quantum dynamics in the Fermi-Pasta-Ulam problem}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26695}, year = {2004}, abstract = {We study the dynamics of four wave interactions in a nonlinear quantum chain of oscillators under the "narrow packet" approximation. We determine the set of times for which the evolution of decay processes is essentially specified by quantum effects. Moreover, we highlight the quantum increment of instability.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1997, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The index of elliptic operators on manifolds with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25096}, year = {1997}, abstract = {For general elliptic pseudodifferential operators on manifolds with singular points, we prove an algebraic index formula. In this formula the symbolic contributions from the interior and from the singular points are explicitly singled out. For two-dimensional manifolds, the interior contribution is reduced to the Atiyah-Singer integral over the cosphere bundle while two additional terms arise. The first of the two is one half of the 'eta' invariant associated to the conormal symbol of the operator at singular points. The second term is also completely determined by the conormal symbol. The example of the Cauchy-Riemann operator on the complex plane shows that all the three terms may be non-zero.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1997, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On the index formula for singular surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25116}, year = {1997}, abstract = {In the preceding paper we proved an explicit index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points. Apart from the Atiyah-Singer integral, it contains two additional terms, one of the two being the 'eta' invariant defined by the conormal symbol. In this paper we clarify the meaning of the additional terms for differential operators.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov2003, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On index theorem for symplectic orbifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26550}, year = {2003}, abstract = {We give an explicit construction of the trace on the algebra of quantum observables on a symplectic orbifold and propose an index formula.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1999, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A general index formula on tropic manifolds with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25501}, year = {1999}, abstract = {We solve the index problem for general elliptic pseudodifferential operators on toric manifolds with conical points.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1998, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The index of higher order operators on singular surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25127}, year = {1998}, abstract = {The index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points contains the Atiyah-Singer integral as well as two additional terms. One of the two is the 'eta' invariant defined by the conormal symbol, and the other term is explicitly expressed via the principal and subprincipal symbols of the operator at conical points. In the preceding paper we clarified the meaning of the additional terms for first-order differential operators. The aim of this paper is an explicit description of the contribution of a conical point for higher-order differential operators. We show that changing the origin in the complex plane reduces the entire contribution of the conical point to the shifted 'eta' invariant. In turn this latter is expressed in terms of the monodromy matrix for an ordinary differential equation defined by the conormal symbol.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1998, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A remark on the index of symmetric operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25169}, year = {1998}, abstract = {We introduce a natural symmetry condition for a pseudodifferential operator on a manifold with cylindrical ends ensuring that the operator admits a doubling across the boundary. For such operators we prove an explicit index formula containing, apart from the Atiyah-Singer integral, a finite number of residues of the logarithmic derivative of the conormal symbol.}, language = {en} } @unpublished{GauthierTarkhanov2004, author = {Gauthier, Paul M. and Tarkhanov, Nikolai Nikolaevich}, title = {A covering property of the Riemann zeta-function}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26683}, year = {2004}, abstract = {For each compact subset K of the complex plane C which does not surround zero, the Riemann surface Sζ of the Riemann zeta function restricted to the critical half-strip 0 < Rs < 1/2 contains infinitely many schlicht copies of K lying 'over' K. If Sζ also contains at least one such copy, for some K which surrounds zero, then the Riemann hypothesis fails.}, language = {en} } @unpublished{KiselevTarkhanov2013, author = {Kiselev, Oleg and Tarkhanov, Nikolai Nikolaevich}, title = {The capture of a particle into resonance at potential hole with dissipative perturbation}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64725}, year = {2013}, abstract = {We study the capture of a particle into resonance at a potential hole with dissipative perturbation and periodic outside force. The measure of resonance solutions is evaluated. We also derive an asymptotic formula for the parameter range of those solutions which are captured into resonance.}, language = {en} } @unpublished{KrupchykTarkhanovTuomela2006, author = {Krupchyk, K. and Tarkhanov, Nikolai Nikolaevich and Tuomela, J.}, title = {Elliptic quasicomplexes in Boutet de Monvel algebra}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30122}, year = {2006}, abstract = {We consider quasicomplexes of Boutet de Monvel operators in Sobolev spaces on a smooth compact manifold with boundary. To each quasicomplex we associate two complexes of symbols. One complex is defined on the cotangent bundle of the manifold and the other on that of the boundary. The quasicomplex is elliptic if these symbol complexes are exact away from the zero sections. We prove that elliptic quasicomplexes are Fredholm. As a consequence of this result we deduce that a compatibility complex for an overdetermined elliptic boundary problem operator is also Fredholm. Moreover, we introduce the Euler characteristic for elliptic quasicomplexes of Boutet de Monvel operators.}, language = {en} } @unpublished{KrupchykTarkhanovTuomela2005, author = {Krupchyk, K. and Tarkhanov, Nikolai Nikolaevich and Tuomela, J.}, title = {Generalised elliptic boundary problems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29994}, year = {2005}, abstract = {For elliptic systems of differential equations on a manifold with boundary, we prove the Fredholm property of a class of boundary problems which do not satisfy the Shapiro-Lopatinskii property. We name these boundary problems generalised elliptic, for they preserve the main properties of elliptic boundary problems. Moreover, they reduce to systems of pseudodifferential operators on the boundary which are generalised elliptic in the sense of Saks (1997).}, language = {en} } @unpublished{KytmanovMyslivetsSchulzeetal.2001, author = {Kytmanov, Aleksandr and Myslivets, Simona and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Elliptic problems for the Dolbeault complex}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25979}, year = {2001}, abstract = {The inhomogeneous ∂-equations is an inexhaustible source of locally unsolvable equations, subelliptic estimates and other phenomena in partial differential equations. Loosely speaking, for the anaysis on complex manifolds with boundary nonelliptic problems are typical rather than elliptic ones. Using explicit integral representations we assign a Fredholm complex to the Dolbeault complex over an arbitrary bounded domain in C up(n).}, language = {en} } @unpublished{KytmanovMyslivetsTarkhanov2004, author = {Kytmanov, Aleksandr and Myslivets, Simona and Tarkhanov, Nikolai Nikolaevich}, title = {Power sums of roots of a nonlinear system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26788}, year = {2004}, abstract = {For a system of meromorphic functions f = (f1, . . . , fn) in Cn, an explicit formula is given for evaluating negative power sums of the roots of the nonlinear system f(z) = 0.}, language = {en} } @unpublished{KytmanovMyslivetsTarkhanov2004, author = {Kytmanov, Aleksandr and Myslivets, Simona and Tarkhanov, Nikolai Nikolaevich}, title = {Zeta-function of a nonlinear system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26795}, year = {2004}, abstract = {Given a system of entire functions in Cn with at most countable set of common zeros, we introduce the concept of zeta-function associated with the system. Under reasonable assumptions on the system, the zeta-function is well defined for all s ∈ Zn with sufficiently large components. Using residue theory we get an integral representation for the zeta-function which allows us to construct an analytic extension of the zeta-function to an infinite cone in Cn.}, language = {en} } @unpublished{KytmanovMyslivetsTarkhanov2000, author = {Kytmanov, Aleksandr and Myslivets, Simona and Tarkhanov, Nikolai Nikolaevich}, title = {Removable singularities of CR functions on singular boundaries}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25836}, year = {2000}, abstract = {The problem of analytic representation of integrable CR functions on hypersurfaces with singularities is treated. The nature o singularities does not matter while the set of singularities has surface measure zero. For simple singularities like cuspidal points, edges, corners, etc., also the behaviour of representing analytic functions near singular points is studied.}, language = {en} } @unpublished{KytmanovMyslivetsTarkhanov1999, author = {Kytmanov, Alexander and Myslivets, Simona and Tarkhanov, Nikolai Nikolaevich}, title = {Analytic representation of CR Functions on hypersurfaces with singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25631}, year = {1999}, abstract = {We prove a theorem on analytic representation of integrable CR functions on hypersurfaces with singular points. Moreover, the behaviour of representing analytic functions near singular points is investigated. We are aimed at explaining the new effect caused by the presence of a singularity rather than at treating the problem in full generality.}, language = {en} } @unpublished{KytmanovMyslivetsTarkhanov2002, author = {Kytmanov, Alexander and Myslivets, Simona and Tarkhanov, Nikolai Nikolaevich}, title = {Holomorphic Lefschetz formula for manifolds with boundary}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26354}, year = {2002}, abstract = {The classical Lefschetz fixed point formula expresses the number of fixed points of a continuous map f : M -> M in terms of the transformation induced by f on the cohomology of M. In 1966 Atiyah and Bott extended this formula to elliptic complexes over a compact closed manifold. In particular, they presented a holomorphic Lefschtz formula for compact complex manifolds without boundary, a result, in the framework of algebraic geometry due to Eichler (1957) for holomorphic curves. On compact complex manifolds with boundary the Dolbeault complex is not elliptic, hence the Atiyah-Bott theory is no longer applicable. To get rid of the difficulties related to the boundary behaviour of the Dolbeault cohomology, Donelli and Fefferman (1986) derived a fixed point formula for the Bergman metric. The purpose of this paper is to present a holomorphic Lefschtz formula on a compact complex manifold with boundary}, language = {en} }