@article{FrascaRojasSalewskietal.2012, author = {Frasca, Stefano and Rojas, Oscar and Salewski, Johannes and Neumann, Bettina and Stiba, Konstanze and Weidinger, Inez M. and Tiersch, Brigitte and Leimk{\"u}hler, Silke and Koetz, Joachim and Wollenberger, Ursula}, title = {Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode}, series = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, volume = {87}, journal = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, publisher = {Elsevier}, address = {Lausanne}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2011.11.012}, pages = {33 -- 41}, year = {2012}, abstract = {The present study reports a facile approach for sulfite biosensing, based on enhanced direct electron transfer of a human sulfite oxidase (hSO) immobilized on a gold nanoparticles modified electrode. The spherical core shell AuNPs were prepared via a new method by reduction of HAuCl4 with branched poly(ethyleneimine) in an ionic liquids resulting particles with a diameter less than 10 nm. These nanoparticles were covalently attached to a mercaptoundecanoic acid modified Au-electrode where then hSO was adsorbed and an enhanced interfacial electron transfer and electrocatalysis was achieved. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, are employed for the characterization of the system and reveal no perturbation of the structural integrity of the redox protein. The proposed biosensor exhibited a quick steady-state current response, within 2 s, a linear detection range between 0.5 and 5.4 mu M with a high sensitivity (1.85 nA mu M-1). The investigated system provides remarkable advantages in the possibility to work at low applied potential and at very high ionic strength. Therefore these properties could make the proposed system useful in the development of bioelectronic devices and its application in real samples.}, language = {en} } @article{WoehlBruhnBadarBertzetal.2012, author = {W{\"o}hl-Bruhn, Stefanie and Badar, Muhammad and Bertz, Andreas and Tiersch, Brigitte and Koetz, Joachim and Menzel, Henning and M{\"u}ller, Peter P. and Bunjes, Heike}, title = {Comparison of in vitro and in vivo protein release from hydrogel systems}, series = {Journal of controlled release}, volume = {162}, journal = {Journal of controlled release}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2012.05.049}, pages = {127 -- 133}, year = {2012}, abstract = {Hydrogel systems based on hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)(6)MA) or hydroxyethyl starch methacrylate (HES-MA) were used to assess the protein release behavior. Here, we analyzed the in vitro release of FITC-anti-human antibodies incorporated in either HES-P(EG)(6)MA or HES-MA hydrogel delivery systems in PBS or human serum. In addition, hydrogel disks and microparticles prepared from the two polymers were subcutaneously implanted in BALB/c mice. The in vivo release of FITC-IgG was non-invasively monitored by an in vivo imaging system (IVIS 200) over a time period of up to 3 months. The imaging system allowed to asses individual animals over time, therefore only a small number of animals was required to obtain high quality data. The reduction in fluorescence intensity at the site of administration was compared to in vitro release profiles. These investigations demonstrated a sustained release from HES-MA hydrogel disks compared to rapidly degrading HES-P(EG)(6)MA disks and microparticles. The sustained release from HES-MA disks could be further optimized by using increased polymer concentrations. Human serum as in vitro release medium reflected better the in vivo release from HES-P(EG)(6)MA systems than PBS, suggesting that the presence of organic substances like proteins or lipids may play a significant role for the release kinetics.}, language = {en} } @article{KoethTierschAppelhansetal.2012, author = {Koeth, Anja and Tiersch, Brigitte and Appelhans, Dietmar and Gradzielski, Michael and C{\"o}lfen, Helmut and Koetz, Joachim}, title = {Synthesis of Core-Shell Gold Nanoparticles with Maltose-Modified Poly(Ethyleneimine)}, series = {Journal of dispersion science and technology}, volume = {33}, journal = {Journal of dispersion science and technology}, number = {1-3}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {0193-2691}, doi = {10.1080/01932691.2010.530084}, pages = {52 -- 60}, year = {2012}, abstract = {The synthesis of ultrafine gold nanoparticles in presence of maltose-modified hyperbranched poly(ethyleneimines) (PEI) is described. The polymer acted as both a reducing and stabilising agent in the particle formation process. The nanoparticles were characterized by means of dynamic light scattering (DLS), transmission electron microscopy (TEM), analytical ultracentrifugation (AUC), small-angle x-ray scattering (SAXS), and small-angle neutron scattering (SANS). The mechanism of nanoparticle formation can be described in two steps. The reduction process of the Au3+ ions located in the inner coil region of the hyperbranched PEI led to the formation of a compact gold core, and is accompanied by a collapse of the polymer coil. Therefore, in the subsequent reduction process a gold-polymer hybrid shell is formed. By using the PEI of higher molar mass, core-shell gold nanoparticles of about 3.6 nm size with a more narrow size distribution and special fluorescence behavior could be synthesized.}, language = {en} } @article{NeumannNoeskeTaubertetal.2012, author = {Neumann, Mike and Noeske, Robert and Taubert, Andreas and Tiersch, Brigitte and Strauch, Peter}, title = {Highly structured, biomorphous beta-SiC with high specific surface area from Equisetaceae}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {18}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm30253e}, pages = {9046 -- 9051}, year = {2012}, abstract = {Mesoporous, highly structured silicon carbide (beta-SiC) was synthesised from renewable plant materials (two Equisetaceae species) in a one-step carbothermal process at remarkably low temperatures down to 1200 degrees C. The SiC precursor is a silicon-carbon mixture with finely dispersed carbon prepared by pyrolysis of the organic plant matrix. Yields are 3 to 100\% (omega(Si/Si) related to the silicon deposited in the plant material), depending on reaction temperature and time. IR spectroscopy, X-ray diffraction, and nitrogen sorption prove the formation of high-purity beta-SiC with minor inorganic impurities after purification and a high specific surface area of up to 660 m(2) g(-1). Scanning electron microscopy shows that the plant morphology is maintained in the final SiC. Sedimentation analysis finds a mean particle size (diameters d(50)) of 20 mu m.}, language = {en} }