@article{SaalChaabeneHelmetal.2022, author = {Saal, Christian and Chaabene, Helmi and Helm, Norman and Warnke, Torsten and Prieske, Olaf}, title = {Network analysis of associations between anthropometry, physical fitness, and sport-specific performance in young canoe sprint athletes}, series = {Frontiers in sports and active living}, volume = {4}, journal = {Frontiers in sports and active living}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2624-9367}, doi = {10.3389/fspor.2022.1038350}, pages = {13}, year = {2022}, abstract = {Introduction Anthropometric and physical fitness data can predict sport-specific performance (e.g., canoe sprint race time) in young athletes. Of note, inter-item correlations (i.e., multicollinearity) may exist between tests assessing similar physical qualities. However, multicollinearity among tests may change across age and/or sex due to age-/sex-specific non-linear development of test performances. Therefore, the present study aimed at analyzing inter-item correlations between anthropometric, physical fitness, and sport-specific performance data as a function of age and sex in young canoe sprint athletes. Methods Anthropometric, physical fitness, and sport-specific performance data of 618 male and 297 female young canoe sprint athletes (discipline: male/female kayak, male canoe) were recorded during a national talent identification program between 1992 and 2019. For each discipline, a correlation matrix (i.e., network analysis) was calculated for age category (U13, U14, U15, U16) and sex including anthropometrics (e.g., standing body height, body mass), physical fitness (e.g., cardiorespiratory endurance, muscle power), and sport-specific performance (i.e., 250 and 2,000-m on-water canoe sprint time). Network plots were used to explore the correlation patterns by visual inspection. Further, trimmed means (mu(trimmed)) of inter-item Pearson's correlations coefficients were calculated for each discipline, age category, and sex. Effects of age and sex were analyzed using one-way ANOVAs. Results Visual inspection revealed consistent associations among anthropometric measures across age categories, irrespective of sex. Further, associations between physical fitness and sport-specific performance were lower with increasing age, particularly in males. In this sense, statistically significant differences for mu(trimmed) were observed in male canoeists (p < 0.01, xi = 0.36) and male kayakers (p < 0.01, xi = 0.38) with lower mu(trimmed) in older compared with younger athletes (i.e., >= U15). For female kayakers, no statistically significant effect of age on mu(trimmed) was observed (p = 0.34, xi = 0.14). Discussion Our study revealed that inter-item correlation patterns (i.e., multicollinearity) of anthropometric, physical fitness, and sport-specific performance measures were lower in older (U15, U16) versus younger (U13, U14) male canoe sprint athletes but not in females. Thus, age and sex should be considered to identify predictors for sport-specific performance and design effective testing batteries for talent identification programs in canoe sprint athletes.}, language = {en} } @article{ThielePrieskeChaabeneetal.2020, author = {Thiele, Dirk and Prieske, Olaf and Chaabene, Helmi and Granacher, Urs}, title = {Effects of strength training on physical fitness and sport-specific performance in recreational, sub-elite, and elite rowers}, series = {Journal of sports sciences}, volume = {38}, journal = {Journal of sports sciences}, number = {10}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0264-0414}, doi = {10.1080/02640414.2020.1745502}, pages = {1186 -- 1195}, year = {2020}, abstract = {The purpose of this systematic review with meta-analysis was to examine the effects of strength training (ST) on selected components of physical fitness (e.g., lower/upper limb maximal strength, muscular endurance, jump performance, cardiorespiratory endurance) and sport-specific performance in rowers. Only studies with an active control group were included if they examined the effects of ST on at least one proxy of physical fitness and/or sport-specific performance in rowers. Weighted and averaged standardized mean differences (SMD) were calculated using random-effects models. Subgroup analyses were computed to identify effects of ST type or expertise level on sport-specific performance. Our analyses revealed significant small effects of ST on lower limb maximal strength (SMD = 0.42, p = 0.05) and on sport-specific performance (SMD = 0.32, p = 0.05). Non-significant effects were found for upper limb maximal strength, upper/lower limb muscular endurance, jump performance, and cardiorespiratory endurance. Subgroup analyses for ST type and expertise level showed non-significant differences between the respective subgroups of rowers (p >= 0.32). Our systematic review with meta-analysis indicated that ST is an effective means for improving lower limb maximal strength and sport-specific performance in rowers. However, ST-induced effects are neither modulated by ST type nor rowers' expertise level.}, language = {en} }