@article{KlugeSchewe2021, author = {Kluge, Lucas and Schewe, Jacob}, title = {Evaluation and extension of the radiation model for internal migration}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.054311}, pages = {9}, year = {2021}, abstract = {Human migration is often studied using gravity models. These models, however, have known limitations, including analytic inconsistencies and a dependence on empirical data to calibrate multiple parameters for the region of interest. Overcoming these limitations, the radiation model has been proposed as an alternative, universal approach to predicting different forms of human mobility, but has not been adopted for studying migration. Here we show, using data on within-country migration from the USA and Mexico, that the radiation model systematically underpredicts long-range moves, while the traditional gravity model performs well for large distances. The universal opportunity model, an extension of the radiation model, shows an improved fit of long-range moves compared to the original radiation model, but at the cost of introducing two additional parameters. We propose a more parsimonious extension of the radiation model that introduces a single parameter. We demonstrate that it fits the data over the full distance spectrum and also-unlike the universal opportunity model-preserves the analytical property of the original radiation model of being equivalent to a gravity model in the limit of a uniform population distribution.}, language = {en} } @article{RikaniSchewe2021, author = {Rikani, Albano and Schewe, Jacob}, title = {Global bilateral migration projections accounting for diasporas, transit and return flows, and poverty constraints}, series = {Demographic research}, volume = {45}, journal = {Demographic research}, publisher = {Max Planck Inst. for Demographic Research}, address = {Rostock}, issn = {2363-7064}, doi = {10.4054/DemRes.2021.45.4}, pages = {87 -- 140}, year = {2021}, abstract = {BACKGROUND Anticipating changes in international migration patterns is useful for demographic studies and for designing policies that support the well-being of those involved. Existing forecasting methods do not account for a number of stylized facts that emerge from large-scale migration observations and theories: existing migrant communities - diasporas - act to lower migration costs and thereby provide a mechanism of self-amplification; return migration and transit migration are important components of global migration flows; and poverty constrains emigration. OBJECTIVE Here we present hindcasts and future projections of international migration that explicitly account for these nonlinear features. METHODS We develop a dynamic model that simulates migration flows by origin, destination, and place of birth. We calibrate the model using recently constructed global datasets of bilateral migration. RESULTS We show that the model reproduces past patterns and trends well based only on initial migrant stocks and changes in national incomes. We then project migration flows under future scenarios of global socioeconomic development. CONCLUSIONS Different assumptions about income levels and between-country inequality lead to markedly different migration trajectories, with migration flows either converging towards net zero if incomes in presently poor countries catch up with the rest of the world; or remaining high or even rising throughout the 21st century if economic development is slower and more unequal. Importantly, diasporas induce significant inertia and sizable return migration flows.}, language = {en} } @article{MesterWillnerFrieleretal.2021, author = {Mester, Benedikt and Willner, Sven N. and Frieler, Katja and Schewe, Jacob}, title = {Evaluation of river flood extent simulated with multiple global hydrological models and climate forcings}, series = {Environmental research letters : ERL / Institute of Physics}, volume = {16}, journal = {Environmental research letters : ERL / Institute of Physics}, number = {9}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac188d}, pages = {15}, year = {2021}, abstract = {Global flood models (GFMs) are increasingly being used to estimate global-scale societal and economic risks of river flooding. Recent validation studies have highlighted substantial differences in performance between GFMs and between validation sites. However, it has not been systematically quantified to what extent the choice of the underlying climate forcing and global hydrological model (GHM) influence flood model performance. Here, we investigate this sensitivity by comparing simulated flood extent to satellite imagery of past flood events, for an ensemble of three climate reanalyses and 11 GHMs. We study eight historical flood events spread over four continents and various climate zones. For most regions, the simulated inundation extent is relatively insensitive to the choice of GHM. For some events, however, individual GHMs lead to much lower agreement with observations than the others, mostly resulting from an overestimation of inundated areas. Two of the climate forcings show very similar results, while with the third, differences between GHMs become more pronounced. We further show that when flood protection standards are accounted for, many models underestimate flood extent, pointing to deficiencies in their flood frequency distribution. Our study guides future applications of these models, and highlights regions and models where targeted improvements might yield the largest performance gains.}, language = {en} }