@article{KimKimParketal.2022, author = {Kim, Jiyong and Kim, Yohan and Park, Kyoungwon and Boeffel, Christine and Choi, Hyung-Seok and Taubert, Andreas and Wedel, Armin}, title = {Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis}, series = {Small : nano micro}, journal = {Small : nano micro}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.202203093}, pages = {11}, year = {2022}, abstract = {The lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol, is demonstrated. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanethiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bind on the incomplete QD surface. These systematic chemical analyses, such as thermogravimetric analysis-mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD-LEDs). It is believed that this better understanding can lead to industrially feasible QD-LEDs.}, language = {en} } @article{BalischewskiChoiBehrensetal.2021, author = {Balischewski, Christian and Choi, Hyung-Seok and Behrens, Karsten and Beqiraj, Alkit and K{\"o}rzd{\"o}rfer, Thomas and Gessner, Andre and Wedel, Armin and Taubert, Andreas}, title = {Metal sulfide nanoparticle synthesis with ionic liquids state of the art and future perspectives}, series = {ChemistryOpen}, volume = {10}, journal = {ChemistryOpen}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2191-1363}, doi = {10.1002/open.202000357}, pages = {272 -- 295}, year = {2021}, abstract = {Metal sulfides are among the most promising materials for a wide variety of technologically relevant applications ranging from energy to environment and beyond. Incidentally, ionic liquids (ILs) have been among the top research subjects for the same applications and also for inorganic materials synthesis. As a result, the exploitation of the peculiar properties of ILs for metal sulfide synthesis could provide attractive new avenues for the generation of new, highly specific metal sulfides for numerous applications. This article therefore describes current developments in metal sulfide nano-particle synthesis as exemplified by a number of highlight examples. Moreover, the article demonstrates how ILs have been used in metal sulfide synthesis and discusses the benefits of using ILs over more traditional approaches. Finally, the article demonstrates some technological challenges and how ILs could be used to further advance the production and specific property engineering of metal sulfide nanomaterials, again based on a number of selected examples.}, language = {en} } @article{HeyneArltGessneretal.2020, author = {Heyne, Benjamin and Arlt, Kristin and Geßner, Andr{\´e} and Richter, Alexander F. and D{\"o}blinger, Markus and Feldmann, Jochen and Taubert, Andreas and Wedel, Armin}, title = {Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media}, series = {Nanomaterials}, volume = {10}, journal = {Nanomaterials}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano10091858}, pages = {24}, year = {2020}, abstract = {Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45\%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41\%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34\%.}, language = {en} } @misc{HeyneArltGessneretal.2020, author = {Heyne, Benjamin and Arlt, Kristin and Geßner, Andr{\´e} and Richter, Alexander F. and D{\"o}blinger, Markus and Feldmann, Jochen and Taubert, Andreas and Wedel, Armin}, title = {Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1026}, issn = {1866-8372}, doi = {10.25932/publishup-48603}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-486032}, pages = {26}, year = {2020}, abstract = {Highly luminescent indium phosphide zinc sulfide (InPZnS) quantum dots (QDs), with zinc selenide/zinc sulfide (ZnSe/ZnS) shells, were synthesized. The QDs were modified via a post-synthetic ligand exchange reaction with 3-mercaptopropionic acid (MPA) and 11-mercaptoundecanoic acid (MUA) in different MPA:MUA ratios, making this study the first investigation into the effects of mixed ligand shells on InPZnS QDs. Moreover, this article also describes an optimized method for the correlation of the QD size vs. optical absorption of the QDs. Upon ligand exchange, the QDs can be dispersed in water. Longer ligands (MUA) provide more stable dispersions than short-chain ligands. Thicker ZnSe/ZnS shells provide a better photoluminescence quantum yield (PLQY) and higher emission stability upon ligand exchange. Both the ligand exchange and the optical properties are highly reproducible between different QD batches. Before dialysis, QDs with a ZnS shell thickness of ~4.9 monolayers (ML), stabilized with a mixed MPA:MUA (mixing ratio of 1:10), showed the highest PLQY, at ~45\%. After dialysis, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with a mixed MPA:MUA and a ratio of 1:10 and 1:100, showed the highest PLQYs, of ~41\%. The dispersions were stable up to 44 days at ambient conditions and in the dark. After 44 days, QDs with a ZnS shell thickness of ~4.9 ML, stabilized with only MUA, showed the highest PLQY, of ~34\%.}, language = {en} } @article{KimHeyneAbouserieetal.2018, author = {Kim, Yohan and Heyne, Benjamin and Abouserie, Ahed and Pries, Christopher and Ippen, Christian and G{\"u}nter, Christina and Taubert, Andreas and Wedel, Armin}, title = {CuS nanoplates from ionic liquid precursors-Application in organic photovoltaic cells}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {148}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {19}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4991622}, pages = {10}, year = {2018}, abstract = {Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl) sulfide and the ionic liquid precursor bis(N-dodecylpyridinium) tetrachloridocuprate( II). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials. The power conversion efficiency of OPV cells fabricated with the nanoplates is 16\% higher than that of a control device fabricated without the nanoplates. (C) 2018 Author(s).}, language = {en} } @article{GerhardKuenstlerGoerneetal.2000, author = {Gerhard, Reimund and K{\"u}nstler, Wolfgang and G{\"o}rne, Thomas and Pucher, Andreas and Weinhold, Till and Seiß, Martin and Xia, Zhongfu and Wedel, Armin and Danz, Rudi}, title = {Porous polytetrafluoroethylene space-charge electrets for piezoelectrical applications}, year = {2000}, language = {en} } @article{XiaGerhardKuenstleretal.1999, author = {Xia, Zhongfu and Gerhard, Reimund and K{\"u}nstler, Wolfgang and Wedel, Armin and Danz, Rudi}, title = {High surface-charge stability of porous polytetrafluoroethylene electret films at room and elvated temperatures}, year = {1999}, language = {en} } @phdthesis{Wedel1992, author = {Wedel, Armin}, title = {Untersuchungen zum Dipolschaltverhalten an Polymerfestk{\"o}rpern}, pages = {73 Bl. : Ill., graph. Darst. + Thesen (1 Ex.)}, year = {1992}, language = {de} }