@misc{DonnerRoesslerKruegeretal.2011, author = {Donner, Stefanie and R{\"o}ßler, Dirk and Kr{\"u}ger, Frank and Ghods, Abdolreza and Strecker, Manfred}, title = {Source mechanisms of the 2004 Baladeh (Iran) earthquake sequence from Iranian broadband and short-period data and seismotectonic implications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53982}, year = {2011}, abstract = {The northward movement and collision of the Arabian plate with Eurasia generates compressive stresses and resulting shortening in Iran. Within the Alborz Mountains, North Iran, a complex and not well understood system of strike-slip and thrust faults accomodates a fundamental part of the NNE-SSW oriented shortening. On 28th of May 2004 the Mw 6.3 Baladeh earthquake hit the north-central Alborz Mountains. It is one of the rare and large events in this region in modern time and thus a seldom chance to study earthquake mechanisms and the local ongoing deformation processes. It also demonstrated the high vulnerability of this densily populated region.}, language = {en} } @article{ScheweLevermannMeinshausen2011, author = {Schewe, Jacob and Levermann, Anders and Meinshausen, Malte}, title = {Climate change under a scenario near 1.5 degrees C of global warming: monsoon intensification, ocean warming and steric sea level rise}, series = {Earth system dynamics}, volume = {2}, journal = {Earth system dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-2-25-2011}, pages = {25 -- 35}, year = {2011}, abstract = {We present climatic consequences of the Representative Concentration Pathways (RCPs) using the coupled climate model CLIMBER-3 alpha, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM) using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of future greenhouse gas (GHG) concentrations pathways currently discussed. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3 alpha to imply a maximal warming by the middle of the 21st century slightly above 1.5 degrees C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50\%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 1.3 m of steric sea level rise by 2250, and 2 m by 2500, under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300-800 m) is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming.}, language = {en} } @article{SchleussnerFrielerMeinshausenetal.2011, author = {Schleussner, Carl-Friedrich and Frieler, Katja and Meinshausen, Malte and Yin, J. and Levermann, Anders}, title = {Emulating Atlantic overturning strength for low emission scenarios consequences for sea-level rise along the North American east coast}, series = {Earth system dynamics}, volume = {2}, journal = {Earth system dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-2-191-2011}, pages = {191 -- 200}, year = {2011}, abstract = {In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommel-type box model to emulate the output of fully coupled three-dimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC mean strength within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from the reduced complexity carbon cycle-climate model MAGICC 6. For RCP3-PD with a global mean temperature median below 1.0 degrees C warming relative to the year 2000, we project an ensemble median weakening of up to 11\% compared to 22\% under RCP4.5 with a warming median up to 1.9 degrees C over the 21st century. Additional Greenland meltwater of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10 \%, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm until 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region, as it does not include ice sheet and mountain glacier contributions.}, language = {en} } @article{MontoyaBornLevermann2011, author = {Montoya, Marisa and Born, Andreas and Levermann, Anders}, title = {Reversed North Atlantic gyre dynamics in present and glacial climates}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {36}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-009-0729-y}, pages = {1107 -- 1118}, year = {2011}, abstract = {The dynamics of the North Atlantic subpolar gyre (SPG) are assessed under present and glacial boundary conditions by investigating the SPG sensitivity to surface wind-stress changes in a coupled climate model. To this end, the gyre transport is decomposed in Ekman, thermohaline, and bottom transports. Surface wind-stress variations are found to play an important indirect role in SPG dynamics through their effect on water-mass densities. Our results suggest the existence of two dynamically distinct regimes of the SPG, depending on the absence or presence of deep water formation (DWF) in the Nordic Seas and a vigorous Greenland-Scotland ridge (GSR) overflow. In the first regime, the GSR overflow is weak and the SPG strength increases with wind-stress as a result of enhanced outcropping of isopycnals in the centre of the SPG. As soon as a vigorous GSR overflow is established, its associated positive density anomalies on the southern GSR slope reduce the SPG strength. This has implications for past glacial abrupt climate changes, insofar as these can be explained through latitudinal shifts in North Atlantic DWF sites and strengthening of the North Atlantic current. Regardless of the ultimate trigger, an abrupt shift of DWF into the Nordic Seas could result both in a drastic reduction of the SPG strength and a sudden reversal in its sensitivity to wind-stress variations. Our results could provide insight into changes in the horizontal ocean circulation during abrupt glacial climate changes, which have been largely neglected up to now in model studies.}, language = {en} } @article{ZhongWangAdelsbergeretal.2011, author = {Zhong, Qi and Wang, Weinan and Adelsberger, Joseph and Golosova, Anastasia and Koumba, Achille M. Bivigou and Laschewsky, Andr{\´e} and Funari, Sergio S. and Perlich, Jan and Roth, Stephan V. and Papadakis, Christine M. and M{\"u}ller-Buschbaum, Peter}, title = {Collapse transition in thin films of poly(methoxydiethylenglycol acrylate)}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2384-1}, pages = {569 -- 581}, year = {2011}, abstract = {The thermal behavior of poly(methoxydiethylenglycol acrylate) (PMDEGA) is studied in thin hydrogel films on solid supports and is compared with the behavior in aqueous solution. The PMDEGA hydrogel film thickness is varied from 2 to 422 nm. Initially, these films are homogenous, as measured with optical microscopy, atomic force microscopy, X-ray reflectivity, and grazing-incidence small-angle X-ray scattering (GISAXS). However, they tend to de-wet when stored under ambient conditions. Along the surface normal, no long-ranged correlations between substrate and film surface are detected with GISAXS, due to the high mobility of the polymer at room temperature. The swelling of the hydrogel films as a function of the water vapor pressure and the temperature are probed for saturated water vapor pressures between 2,380 and 3,170 Pa. While the swelling capability is found to increase with water vapor pressure, swelling in dependence on the temperature revealed a collapse phase transition of a lower critical solution temperature type. The transition temperature decreases from 40.6 A degrees C to 36.6 A degrees C with increasing film thickness, but is independent of the thickness for very thin films below a thickness of 40 nm. The observed transition temperature range compares well with the cloud points observed in dilute (0.1 wt.\%) and semi-dilute (5 wt.\%) solution which decrease from 45 A degrees C to 39 A degrees C with increasing concentration.}, language = {en} } @article{AdelsbergerMeierKollBivigouKoumbaetal.2011, author = {Adelsberger, Joseph and Meier-Koll, Andreas and Bivigou Koumba, Achille Mayelle and Busch, Peter and Holderer, Olaf and Hellweg, Thomas and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {The collapse transition and the segmental dynamics in concentrated micellar solutions of P(S-b-NIPAM) diblock copolymers}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-011-2382-3}, pages = {711 -- 720}, year = {2011}, abstract = {We investigate concentrated solutions of poly(styrene-b-N-isopropyl acrylamide) (P(S-b-NIPAM)) diblock copolymers in deuterated water (D2O). Both structural changes and the changes of the segmental dynamics occurring upon heating through the lower critical solution temperature (LCST) of PNIPAM are studied using small-angle neutron scattering and neutron spin-echo spectroscopy. The collapse of the micellar shell and the cluster formation of collapsed micelles at the LCST as well as an increase of the segmental diffusion coefficient after crossing the LCST are detected. Comparing to our recent results on a triblock copolymer P(S-b-NIPAM-b-S) [25], we observe that the collapse transition of P(S-b-NIPAM) is more complex and that the PNIPAM segmental dynamics are faster than in P(S-b-NIPAM-b-S).}, language = {en} } @misc{TrollKulkarniWangetal.2011, author = {Troll, K. and Kulkarni, Amit and Wang, W. and Darko, C. and Koumba, A. M. Bivigou and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {The collapse transition of poly(styrene-b-(N-isopropyl acrylamide)) diblock copolymers in aqueous solution and in thin films}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {289}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-010-2344-1}, pages = {227 -- 227}, year = {2011}, language = {en} } @inproceedings{GronauWeberHeinze2011, author = {Gronau, Norbert and Weber, Edzard and Heinze, Priscilla}, title = {Cyclic process model transformation}, series = {Proceedings of the 12th European Conference on Knowledge Management}, booktitle = {Proceedings of the 12th European Conference on Knowledge Management}, number = {2}, publisher = {Academic Conferences Ltd.}, address = {Reading}, isbn = {978-1-908272-09-6}, pages = {349 -- 359}, year = {2011}, abstract = {Process analysis usually focuses only on single and selected processes. It is either existent processes that are recorded and analysed or reference processes that are implemented. So far no evident effort has been put into generalising specific process aspects into patterns and comparing those patterns with regard to their efficiency and effectiveness. This article focuses on the combination of dynamic and holistic analytical elements in enterprise architectures. Our goal is to outline an approach to analyse the development of business processes in a cyclical matter and demonstrate this approach based on an existent modelling language. We want to show that organisational learning can derive from the systematic analysis of past and existent processes from which patterns of successful problem solving can be deducted.}, language = {en} } @article{YildirimSchildgenEchtleretal.2011, author = {Yildirim, Cengiz and Schildgen, Taylor F. and Echtler, Helmut Peter and Melnick, Daniel and Strecker, Manfred}, title = {Late Neogene and active orogenic uplift in the Central Pontides associated with the North Anatolian Fault implications for the northern margin of the Central Anatolian Plateau, Turkey}, series = {Tectonics}, volume = {30}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2010TC002756}, pages = {24}, year = {2011}, abstract = {Surface uplift at the northern margin of the Central Anatolian Plateau (CAP) is integrally tied to the evolution of the Central Pontides (CP), between the North Anatolian Fault (NAF) and the Black Sea. Our regional morphometric and plate kinematic analyses reveal topographic anomalies, steep channel gradients, and local high relief areas as indicators of ongoing differential surface uplift, which is higher in the western CP compared to the eastern CP and fault-normal components of geodetic slip vectors and the character of tectonic activity of the NAF suggest that stress is accumulated in its broad restraining bend. Seismic reflection and structural field data show evidence for a deep structural detachment horizon responsible for the formation of an actively northward growing orogenic wedge with a positive flower-structure geometry across the CP and the NAF. Taken together, the tectonic, plate kinematic, and geomorphic observations imply that the NAF is the main driving mechanism for wedge tectonics and uplift in the CP. In addition, the NAF Zone defines the boundary between the extensional CAP and the contractional CP. The syntectonic deposits within inverted intermontane basins and deeply incised gorges suggest that the formation of relief, changes in sedimentary dynamics, and > 1 km fluvial incision resulted from accelerated uplift starting in the early Pliocene. The Central Pontides thus provide an example of an accretionary wedge with surface-breaking faults that play a critical role in mountain building processes, sedimentary basin development, and ensuing lateral growth of a continental plateau since the end of the Miocene.}, language = {en} } @article{ScherlerBookhagenStrecker2011, author = {Scherler, Dirk and Bookhagen, Bodo and Strecker, Manfred}, title = {Hillslope-glacier coupling the interplay of topography and glacial dynamics in High Asia}, series = {Journal of geophysical research : Earth surface}, volume = {116}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0148-0227}, doi = {10.1029/2010JF001751}, pages = {21}, year = {2011}, abstract = {High Asian glacial landscapes have large variations in topographic relief and the size and steepness of snow accumulation areas. Associated differences in glacial cover and dynamics allow a first-order determination of the dominant processes shaping these landscapes. Here we provide a regional synthesis of the topography and flow characteristics of 287 glaciers across High Asia using digital elevation analysis and remotely sensed glacier surface velocities. Glaciers situated in low-relief areas on the Tibetan Plateau are mainly nourished by direct snowfall, have little or no debris cover, and have a relatively symmetrical distribution of velocities along their length. In contrast, avalanche-fed glaciers with steep accumulation areas, which occur at the deeply incised edges of the Tibetan Plateau, are heavily covered with supraglacial debris, and flow velocities are highest along short segments near their headwalls but greatly reduced along their debris-mantled lower parts. The downstream distribution of flow velocities suggests that the glacial erosion potential is progressively shifted upstream as accumulation areas get steeper and hillslope debris fluxes increase. Our data suggest that the coupling of hillslopes and glacial dynamics increases with topographic steepness and debris cover. The melt-lowering effect of thick debris cover allows the existence of glaciers even when they are located entirely below the snow line. However, slow velocities limit the erosion potential of such glaciers, and their main landscape-shaping contribution may simply be the evacuation of debris from the base of glacial headwalls, which inhibits the formation of scree slopes and thereby allows ongoing headwall retreat by periglacial hillslope processes. We propose a conceptual model in which glacially influenced plateau margins evolve from low-relief to high-relief landscapes with distinctive contributions of hillslope processes and glaciers to relief production and decay.}, language = {en} } @article{HainStreckerBookhagenetal.2011, author = {Hain, Mathis P. and Strecker, Manfred and Bookhagen, Bodo and Alonso, Ricardo N. and Pingel, H. and Schmitt, Axel K.}, title = {Neogene to quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25 degrees S)}, series = {Tectonics}, volume = {30}, journal = {Tectonics}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2010TC002703}, pages = {27}, year = {2011}, abstract = {The northwest Argentine Andes constitute a premier natural laboratory to assess the complex interactions between isolated uplifts, orographic precipitation gradients, and related erosion and sedimentation patterns. Here we present new stratigraphic observations and age information from intermontane basin sediments to elucidate the Neogene to Quaternary shortening history and associated sediment dynamics of the broken Salta foreland. This part of the Andean orogen, which comprises an array of basement-cored range uplifts, is located at similar to 25 degrees S and lies to the east of the arid intraorogenic Altiplano/Puna plateau. In the Salta foreland, spatially and temporally disparate range uplift along steeply dipping inherited faults has resulted in foreland compartmentalization with steep basin-tobasin precipitation gradients. Sediment architecture and facies associations record a three-phase (similar to 10, similar to 5, and <2 Ma), east directed, yet unsystematic evolution of shortening, foreland fragmentation, and ensuing changes in precipitation and sediment transport. The provenance signatures of these deposits reflect the trapping of sediments in the intermontane basins of the Andean hinterland, as well as the evolution of a severed fluvial network. Present-day moisture supply to the hinterland is determined by range relief and basin elevation. The conspiring effects of range uplift and low rainfall help the entrapment and long-term storage of sediments, ultimately raising basin elevation in the hinterland, which may amplify aridification in the orogen interior.}, language = {en} } @article{HintersbergerThiedeStrecker2011, author = {Hintersberger, Esther and Thiede, Rasmus Christoph and Strecker, Manfred}, title = {The role of extension during brittle deformation within the NW Indian Himalaya}, series = {Tectonics}, volume = {30}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2010TC002822}, pages = {16}, year = {2011}, abstract = {Synorogenic extension has been recognized as an integral structural constituent of mountain belts and high-elevation plateaus during their evolution. In the Himalaya, both orogen-parallel and orogen-normal extension has been recognized. However, the underlying driving forces for extension and their timing are still a matter of debate. Here we present new fault kinematic data based on systematic measurements of hundreds of outcrop-scale brittle fault planes in the NW Indian Himalaya. This new data set, as well as field observations including crosscutting relationships, mineral fibers on fault planes, and correlations with deformation structures in lake sediments, allows us to distinguish different deformation styles. The overall strain pattern derived from our data reflects the large regional contractional deformation pattern very well but also reveals significant extensional deformation in a region, which is dominated by shortening. In total, we were able to identify six deformation styles, most of which are temporally and spatially linked, representing protracted shortening. Our observations also furnish the basis for a detailed overview of the younger deformation history in the NW Himalaya, which has been characterized by extension overprinting previously generated structures related to shortening. The four dominant deformation styles are (1) shortening parallel to the regional convergence direction; (2) arc-normal extension; (3) arc-parallel extension; and finally, (4) E-W extension. This is the first data set where a succession of both arc-normal and E-W extension has been documented in the Himalaya. Importantly, our observations help differentiate E-W extension triggered by processes within the Tibetan Plateau from arc-parallel and arc-normal extension originating from the curvature of the Himalayan orogen.}, language = {en} } @article{ScherlerBookhagenStrecker2011, author = {Scherler, Dirk and Bookhagen, Bodo and Strecker, Manfred}, title = {Spatially variable response of Himalayan glaciers to climate change affected by debris cover}, series = {Nature geoscience}, volume = {4}, journal = {Nature geoscience}, number = {3}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/NGEO1068}, pages = {156 -- 159}, year = {2011}, abstract = {Controversy about the current state and future evolution of Himalayan glaciers has been stirred up by erroneous statements in the fourth report by the Intergovernmental Panel on Climate Change(1,2). Variable retreat rates(3-6) and a paucity of glacial mass-balance data(7,8) make it difficult to develop a coherent picture of regional climate-change impacts in the region. Here, we report remotely-sensed frontal changes and surface velocities from glaciers in the greater Himalaya between 2000 and 2008 that provide evidence for strong spatial variations in glacier behaviour which are linked to topography and climate. More than 65\% of the monsoon-influenced glaciers that we observed are retreating, but heavily debris-covered glaciers with stagnant low-gradient terminus regions typically have stable fronts. Debris-covered glaciers are common in the rugged central Himalaya, but they are almost absent in subdued landscapes on the Tibetan Plateau, where retreat rates are higher. In contrast, more than 50\% of observed glaciers in the westerlies-influenced Karakoram region in the northwestern Himalaya are advancing or stable. Our study shows that there is no uniform response of Himalayan glaciers to climate change and highlights the importance of debris cover for understanding glacier retreat, an effect that has so far been neglected in predictions of future water availability(9,10) or global sea level(11).}, language = {en} } @misc{ShawGafosHooleetal.2011, author = {Shaw, Jason A. and Gafos, Adamantios I. and Hoole, Philip and Zeroual, Chakir}, title = {Dynamic invariance in the phonetic expression of syllable structure}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {516}, issn = {1866-8364}, doi = {10.25932/publishup-41247}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412479}, pages = {455 -- 490}, year = {2011}, abstract = {We asked whether invariant phonetic indices for syllable structure can be identified in a language where word-initial consonant clusters, regardless of their sonority profile, are claimed to be parsed heterosyllabically. Four speakers of Moroccan Arabic were recorded, using Electromagnetic Articulography. Pursuing previous work, we employed temporal diagnostics for syllable structure, consisting of static correspondences between any given phonological organisation and its presumed phonetic indices. We show that such correspondences offer only a partial understanding of the relation between syllabic organisation and continuous indices of that organisation. We analyse the failure of the diagnostics and put forth a new approach in which different phonological organisations prescribe different ways in which phonetic indices change as phonetic parameters are scaled. The main finding is that invariance is found in these patterns of change, rather than in static correspondences between phonological constructs and fixed values for their phonetic indices.}, language = {en} } @misc{BuschMeissnerPotthoffetal.2011, author = {Busch, Jan Philip and Meißner, Tobias and Potthoff, Annegret and Oswald, Sascha}, title = {Plating of nano zero-valent iron (nZVI) on activated carbon : a fast delivery method of iron for source remediation?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53792}, year = {2011}, abstract = {The use of nano zerovalent iron (nZVI) for environmental remediation is a promising new technique for in situ remediation. Due to its high surface area and high reactivity, nZVI is able to dechlorinate organic contaminants and render them harmless. Limited mobility, due to fast aggregation and sedimentation of nZVI, limits the capability for source and plume remediation. Carbo-Iron is a newly developed material consisting of activated carbon particles (d50 = 0,8 µm) that are plated with nZVI particles. These particles combine the mobility of activated carbon and the reactivity of nZVI. This paper presents the first results of the transport experiments.}, language = {en} } @article{DeBiaseRegerSchmidtetal.2011, author = {De Biase, Cecilia and Reger, Daniel and Schmidt, Axel and Jechalke, Sven and Reiche, Nils and Martinez-Lavanchy, Paula M. and Rosell, Monica and Van Afferden, Manfred and Maier, Uli and Oswald, Sascha and Thullner, Martin}, title = {Treatment of volatile organic contaminants in a vertical flow filter - relevance of different removal processes}, series = {Ecological engineering : the journal of ecotechnology}, volume = {37}, journal = {Ecological engineering : the journal of ecotechnology}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-8574}, doi = {10.1016/j.ecoleng.2011.03.023}, pages = {1292 -- 1303}, year = {2011}, abstract = {Vertical flow filters and vertical flow constructed wetlands are established wastewater treatment systems and have also been proposed for the treatment of contaminated groundwater. This study investigates the removal processes of volatile organic compounds in a pilot-scale vertical flow filter. The filter is intermittently irrigated with contaminated groundwater containing benzene, MTBE and ammonium as the main contaminants. The system is characterized by unsaturated conditions and high contaminant removal efficiency. The aim of the present study is to evaluate the contribution of biodegradation and volatilization to the overall removal of benzene and MTBE. Tracer tests and flow rate measurements showed a highly transient flow and heterogeneous transport regime. Radon-222, naturally occurring in the treated groundwater, was used as a gas tracer and indicated a high volatilization potential. Radon-222 behavior was reproduced by numerical simulations and extrapolated for benzene and MTBE, and indicated these compounds also have a high volatilization potential. In contrast, passive sampler measurements on top of the filter detected only low benzene and MTBE concentrations. Biodegradation potential was evaluated by the analysis of catabolic genes involved in organic compound degradation and a quantitative estimation of biodegradation was derived from stable isotope fractionation analysis. Results suggest that despite the high volatilization potential, biodegradation is the predominant mass removal process in the filter system, which indicates that the volatilized fraction of the contaminants is still subject to subsequent biodegradation. In particular, the upper filter layer located between the injection tubes and the surface of the system might also contribute to biodegradation, and might play a crucial role in avoiding the emission of volatilized contaminants into the atmosphere.}, language = {en} } @article{MoradiCarminatiVetterleinetal.2011, author = {Moradi, Ahmad B. and Carminati, Andrea and Vetterlein, Doris and Vontobel, Peter and Lehmann, Eberhard and Weller, Ulrich and Hopmans, Jan W. and Vogel, Hans-J{\"o}rg and Oswald, Sascha}, title = {Three-dimensional visualization and quantification of water content in the rhizosphere}, series = {New phytologist : international journal of plant science}, volume = {192}, journal = {New phytologist : international journal of plant science}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/j.1469-8137.2011.03826.x}, pages = {653 -- 663}, year = {2011}, abstract = {Despite the importance of rhizosphere properties for water flow from soil to roots, there is limited quantitative information on the distribution of water in the rhizosphere of plants. Here, we used neutron tomography to quantify and visualize the water content in the rhizosphere of the plant species chickpea (Cicer arietinum), white lupin (Lupinus albus), and maize (Zea mays) 12 d after planting. We clearly observed increasing soil water contents (h) towards the root surface for all three plant species, as opposed to the usual assumption of decreasing water content. This was true for tap roots and lateral roots of both upper and lower parts of the root system. Furthermore, water gradients around the lower part of the roots were smaller and extended further into bulk soil compared with the upper part, where the gradients in water content were steeper. Incorporating the hydraulic conductivity and water retention parameters of the rhizosphere into our model, we could simulate the gradual changes of h towards the root surface, in agreement with the observations. The modelling result suggests that roots in their rhizosphere may modify the hydraulic properties of soil in a way that improves uptake under dry conditions.}, language = {en} } @article{MunzOswaldSchmidt2011, author = {Munz, Matthias and Oswald, Sascha and Schmidt, C.}, title = {Sand box experiments to evaluate the influence of subsurface temperature probe design on temperature based water flux calculation}, series = {Hydrology and earth system sciences : HESS}, volume = {15}, journal = {Hydrology and earth system sciences : HESS}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-15-3495-2011}, pages = {3495 -- 3510}, year = {2011}, abstract = {Quantification of subsurface water fluxes based on the one dimensional solution to the heat transport equation depends on the accuracy of measured subsurface temperatures. The influence of temperature probe setup on the accuracy of vertical water flux calculation was systematically evaluated in this experimental study. Four temperature probe setups were installed into a sand box experiment to measure temporal highly resolved vertical temperature profiles under controlled water fluxes in the range of +/- 1.3 md(-1). Pass band filtering provided amplitude differences and phase shifts of the diurnal temperature signal varying with depth depending on water flux. Amplitude ratios of setups directly installed into the saturated sediment significantly varied with sand box hydraulic gradients. Amplitude ratios provided an accurate basis for the analytical calculation of water flow velocities, which matched measured flow velocities. Calculated flow velocities were sensitive to thermal properties of saturated sediment and to temperature sensor spacing, but insensitive to thermal dispersivity equal to solute dispersivity. Amplitude ratios of temperature probe setups indirectly installed into piezometer pipes were influenced by thermal exchange processes within the pipes and significantly varied with water flux direction only. Temperature time lags of small sensor distances of all setups were found to be insensitive to vertical water flux.}, language = {en} } @misc{Marwan2011, author = {Marwan, Norbert}, title = {How to avoid potential pitfalls in recurrence plot based data analysis}, series = {International journal of bifurcation and chaos : in applied sciences and engineering}, volume = {21}, journal = {International journal of bifurcation and chaos : in applied sciences and engineering}, number = {4}, publisher = {World Scientific}, address = {Singapore}, issn = {0218-1274}, doi = {10.1142/S0218127411029008}, pages = {1003 -- 1017}, year = {2011}, abstract = {Recurrence plots and recurrence quantification analysis have become popular in the last two decades. Recurrence based methods have on the one hand a deep foundation in the theory of dynamical systems and are on the other hand powerful tools for the investigation of a variety of problems. The increasing interest encompasses the growing risk of misuse and uncritical application of these methods. Therefore, we point out potential problems and pitfalls related to different aspects of the application of recurrence plots and recurrence quantification analysis.}, language = {en} } @article{vanAfferdenRahmanMosigetal.2011, author = {van Afferden, Manfred and Rahman, Khaja Z. and Mosig, Peter and De Biase, Cecilia and Thullner, Martin and Oswald, Sascha and M{\"u}ller, Roland A.}, title = {Remediation of groundwater contaminated with MTBE and benzene the potential of vertical-flow soil filter systems}, series = {Water research}, volume = {45}, journal = {Water research}, number = {16}, publisher = {Elsevier}, address = {Oxford}, issn = {0043-1354}, doi = {10.1016/j.watres.2011.07.010}, pages = {5063 -- 5074}, year = {2011}, abstract = {Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF + PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970 +/- 816 and 13,966 +/- 1998 mu g L(-1), respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m(-2) d(-1) were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m(-2)d(-1), the mean concentrations of MTBE and benzene were found to be 550 +/- 133 and 65 +/- 123 mu g L(-1) in the effluent of the RF. In the effluent of the PP system, respective mean MTBE and benzene concentrations of 49 +/- 77 and 0.5 +/- 0.2 mu g L(-1) were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 mu g L-1 for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10\%, which were higher than the limit value. Therefore, both (RF + PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70\% of MTBE and 98\% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (similar to 100\% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 5 +/- 10 and 0.6 +/- 0.2 mu g L(-1) in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1\% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries.}, language = {en} }