@phdthesis{Mai2016, author = {Mai, Tobias}, title = {Polymerunterst{\"u}tzte Calciumphosphatmineralisation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89056}, school = {Universit{\"a}t Potsdam}, year = {2016}, abstract = {Im Verlauf dieser Arbeit sind Blockcopolymere verschiedener Ladung auf Basis von PEO mit hohen Molekulargewichten durch lebendende freie radikalische Polymerisation hergestellt worden. Die Polymere sind einfach im Grammmaßstab herstellbar. Sie zeigen sowohl einen großen Einfluss auf die Nukleation als auch auf die Aufl{\"o}sung von Calciumphosphat. Gleichwohl scheint das Vorhandensein von positiven Gruppen (Kationen, Ampholyten und Betainen) keinen dramatischen Einfluss auf die Nukleation zu haben. So verursachen Polymere mit positiven Ladungen die gleiche Retentionwirkung wie solche, die ausschließlich anionische Gruppen enthalten. Aus der Verwendung der kationischen, ampholytischen und betainischen Copolymere resultiert allerdings eine andersartige Morphologie der Niederschl{\"a}ge, als aus der Verwendung der Anionischen hervorgeht. Bei der Stabilisierung einer HAP-Oberfl{\"a}che setzt sich dieser Trend fort, das heißt, rein anionische Copolymere wirken st{\"a}rker stabilisierend als solche, die positive Ladungen enthalten. Durch Inkubation von menschlichem Zahnschmelz mit anionischen Copolymeren konnte gezeigt werden, dass die Biofilmbildung verglichen mit einer unbehandelten Zahnoberfl{\"a}che eingeschr{\"a}nkt abl{\"a}uft. All dies macht die Polymere zu interessanten Additiven f{\"u}r Zahnpflegeprodukte. Zus{\"a}tzlich konnten auf Basis dieser rein anionischen Copolymere Polymerb{\"u}rsten, ebenfalls {\"u}ber lebendende freie radikalische Polymerisation, hergestellt werden. Diese zeichnen sich durch einen großen Einfluss auf die Kristallphase aus und bilden mit dem CHAP des AB-Types das Material, welches auch in Knochen und Z{\"a}hnen vorkommt. Erste Cytotoxizit{\"a}tstests lassen auf das große Potential dieser Polymerb{\"u}rsten f{\"u}r Beschichtungen in der Medizintechnik schließen.}, language = {de} } @phdthesis{Hentrich2017, author = {Hentrich, Doreen}, title = {Grenzfl{\"a}chen-kontrollierte Mineralisation von Calciumphosphat}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398236}, school = {Universit{\"a}t Potsdam}, pages = {163}, year = {2017}, abstract = {In der vorliegenden Arbeit konnte gezeigt werden, dass die beiden verwendeten Amphiphile mit Cholesterol als hydrophoben Block, gute Template f{\"u}r die Mineralisation von Calciumphosphat an der Wasser/Luft-Grenzfl{\"a}che sind. Mittels Infrarot-Reflexions-Absorptions-Spektroskopie (IRRAS), R{\"o}ntgenphotoelektronenspektroskopie (XPS), Energie dispersiver R{\"o}ntgenspektroskopie (EDXS), Elektronenbeugung (SAED) und hochaufl{\"o}sende Transmissionselektronenmikroskopie (HRTEM) konnte die erfolgreiche Mineralisation von Calciumphosphat f{\"u}r beide Amphiphile an der Wasser/Luft-Grenzfl{\"a}che nachgewiesen werden. Es konnte auch gezeigt werden, dass das Phasenverhalten der beiden Amphiphile und die bei der Mineralisation von Calciumphosphat gebildeten Kristallphasen nicht identisch sind. Beide Amphiphile {\"u}ben demnach einen unterschiedlichen Einfluss auf den Mineralisationsverlauf aus. Beim CHOL-HEM konnte sowohl nach 3 h als auch nach 5 h Octacalciumphosphat (OCP) als einzige Kristallphase mittels XPS, SAED, HRTEM und EDXS nachgewiesen werden. Das A-CHOL hingegen zeigte bei der Mineralisation von Calciumphosphat nach 1 h zun{\"a}chst eine nicht eindeutig identifizierbare Vorl{\"a}uferphase aus amorphen Calciumphosphat, Brushit (DCPD) oder OCP. Diese wandelte sich dann nach 3 h und 5 h in ein Gemisch, bestehend aus OCP und ein wenig Hydroxylapatit (HAP) um. Die Schlussfolgerung daraus ist, dass das CHOL-HEM in der Lage ist, dass w{\"a}hrend der Mineralisation entstandene OCP zu stabilisieren. Dies geschieht vermutlich durch die Adsorption des Amphiphils bevorzugt an der OCP Oberfl{\"a}che in [100] Orientierung. Dadurch wird die Spaltung entlang der c-Achse unterdr{\"u}ckt und die Hydrolyse zum HAP verhindert. Das A-CHOL ist hingegen sterisch anspruchsvoller und kann wahrscheinlich aufgrund seiner Gr{\"o}ße nicht so gut an der OCP Kristalloberfl{\"a}che adsorbieren verglichen zum CHOL HEM. Das CHOL-HEM kann also die Hydrolyse von OCP zu HAP besser unterdr{\"u}cken als das A-CHOL. Da jedoch auch beim A-CHOL nach einer Mineralisationszeit von 5 h nur wenig HAP zu finden ist, w{\"a}re auch hier ein Stabilisierungseffekt der OCP Kristalle m{\"o}glich. Um eine genaue Aussage dar{\"u}ber treffen zu k{\"o}nnen, sind jedoch zus{\"a}tzliche Kontrollexperimente notwendig. Es w{\"a}re zum einen denkbar, die Mineralisationsexperimente {\"u}ber einen l{\"a}ngeren Zeitraum durchzuf{\"u}hren. Diese k{\"o}nnten zeigen, ob das CHOL-HEM die Hydrolyse vom OCP zum HAP komplett unterdr{\"u}ckt. Außerdem k{\"o}nnte nachgewiesen werden, ob beim A-CHOL das OCP weiter zum HAP umgesetzt wird oder ob ein Gemisch beider Kristallphasen erhalten bleibt. Um die Mineralisation an der Wasser/Luft-Grenzfl{\"a}che mit der Mineralisation in Bulkl{\"o}sung zu vergleichen, wurden zus{\"a}tzlich Mineralisationsexperimente in Bulkl{\"o}sung durchgef{\"u}hrt. Dazu wurden Nitrilotriessigs{\"a}ure (NTA) und Ethylendiamintetraessigs{\"a}ure (EDTA) als Mineralisationsadditive verwendet, da NTA unter anderem der Struktur der hydrophilen Kopfgruppe des A-CHOLs {\"a}hnelt. Es konnte gezeigt werden, dass ein Vergleich der Mineralisation an der Grenzfl{\"a}che mit der Mineralisation in Bulkl{\"o}sung nicht ohne weiteres m{\"o}glich ist. Bei der Mineralisation in Bulkl{\"o}sung wird bei tiefen pH-Werten DCPD und bei h{\"o}heren pH-Werten HAP gebildet. Diese wurde mittels R{\"o}ntgenpulverdiffraktometrie Messungen nachgewiesen und durch Infrarotspektroskopie bekr{\"a}ftigt. Die Bildung von OCP wie an der Wasser/Luft-Grenzfl{\"a}che konnte nicht beobachtet werden. Es konnte auch gezeigt werden, dass beide Additive NTA und EDTA einen unterschiedlichen Einfluss auf den Verlauf der Mineralisation nehmen. So unterscheiden sich zum einen die Morphologien des gebildeten DCPDs und zum anderen wurde beispielsweise in Anwesenheit von 10 und 15 mM NTA neben DCPD auch HAP bei einem Ausgangs-pH-Wert von 7 nachgewiesen. Da unser Augenmerk speziell auf der Mineralisation von Calciumphosphat an der Wasser/Luft-Grenzfl{\"a}che liegt, k{\"o}nnten Folgeexperimente wie beispielsweise GIXD Messungen durchgef{\"u}hrt werden. Dadurch w{\"a}re es m{\"o}glich, einen {\"U}berblick {\"u}ber die gebildeten Kristallphasen nach unterschiedlichen Reaktionszeiten direkt auf dem Trog zu erhalten. Es konnte weiterhin gezeigt werden, dass auch einfache Amphiphile in der Lage sind, die Mineralisation von Calciumphosphat zu steuern. Amphiphile mit Cholesterol als hydrophoben Block bilden offensichtlich besonders stabile Monolagen an der Wasser/Luft-Grenzfl{\"a}che. Eine Untersuchung des Einflusses {\"a}hnlicher Amphiphile mit unterschiedlichen hydrophilen Kopfgruppen auf das Mineralisationsverhalten von Calciumphosphat w{\"a}re durchaus interessant.}, language = {de} } @phdthesis{Schemenz2022, author = {Schemenz, Victoria}, title = {Correlations between osteocyte lacuno-canalicular network and material characteristics in bone adaptation and regeneration}, doi = {10.25932/publishup-55959}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559593}, school = {Universit{\"a}t Potsdam}, pages = {3, xii, 146}, year = {2022}, abstract = {The complex hierarchical structure of bone undergoes a lifelong remodeling process, where it adapts to mechanical needs. Hereby, bone resorption by osteoclasts and bone formation by osteoblasts have to be balanced to sustain a healthy and stable organ. Osteocytes orchestrate this interplay by sensing mechanical strains and translating them into biochemical signals. The osteocytes are located in lacunae and are connected to one another and other bone cells via cell processes through small channels, the canaliculi. Lacunae and canaliculi form a network (LCN) of extracellular spaces that is able to transport ions and enables cell-to-cell communication. Osteocytes might also contribute to mineral homeostasis by direct interactions with the surrounding matrix. If the LCN is acting as a transport system, this should be reflected in the mineralization pattern. The central hypothesis of this thesis is that osteocytes are actively changing their material environment. Characterization methods of material science are used to achieve the aim of detecting traces of this interaction between osteocytes and the extracellular matrix. First, healthy murine bones were characterized. The properties analyzed were then compared with three murine model systems: 1) a loading model, where a bone of the mouse was loaded during its life time; 2) a healing model, where a bone of the mouse was cut to induce a healing response; and 3) a disease model, where the Fbn1 gene is dysfunctional causing defects in the formation of the extracellular tissue. The measurement strategy included routines that make it possible to analyze the organization of the LCN and the material components (i.e., the organic collagen matrix and the mineral particles) in the same bone volumes and compare the spatial distribution of different data sets. The three-dimensional network architecture of the LCN is visualized by confocal laser scanning microscopy (CLSM) after rhodamine staining and is then subsequently quantified. The calcium content is determined via quantitative backscattered electron imaging (qBEI), while small- and wide-angle X-ray scattering (SAXS and WAXS) are employed to determine the thickness and length of local mineral particles. First, tibiae cortices of healthy mice were characterized to investigate how changes in LCN architecture can be attributed to interactions of osteocytes with the surrounding bone matrix. The tibial mid-shaft cross-sections showed two main regions, consisting of a band with unordered LCN surrounded by a region with ordered LCN. The unordered region is a remnant of early bone formation and exhibited short and thin mineral particles. The surrounding, more aligned bone showed ordered and dense LCN as well as thicker and longer mineral particles. The calcium content was unchanged between the two regions. In the mouse loading model, the left tibia underwent two weeks of mechanical stimulation, which results in increased bone formation and decreased resorption in skeletally mature mice. Here the specific research question addressed was how do bone material characteristics change at (re)modeling sites? The new bone formed in response to mechanical stimulation showed similar properties in terms of the mineral particles, like the ordered calcium region but lower calcium content compared to the right, non-loaded control bone of the same mice. There was a clear, recognizable border between mature and newly formed bone. Nevertheless, some canaliculi went through this border connecting the LCN of mature and newly formed bone. Additionally, the question should be answered whether the LCN topology and the bone matrix material properties adapt to loading. Although, mechanically stimulated bones did not show differences in calcium content compared to controls, different correlations were found between the local LCN density and the local Ca content depending on whether the bone was loaded or not. These results suggest that the LCN may serve as a mineral reservoir. For the healing model, the femurs of mice underwent an osteotomy, stabilized with an external fixator and were allowed to heal for 21 days. Thus, the spatial variations in the LCN topology with mineral properties within different tissue types and their interfaces, namely calcified cartilage, bony callus and cortex, could be simultaneously visualized and compared in this model. All tissue types showed structural differences across multiple length scales. Calcium content increased and became more homogeneous from calcified cartilage to bony callus to lamellar cortical bone. The degree of LCN organization increased as well, while the lacunae became smaller, as did the lacunar density between these different tissue types that make up the callus. In the calcified cartilage, the mineral particles were short and thin. The newly formed callus exhibited thicker mineral particles, which still had a low degree of orientation. While most of the callus had a woven-like structure, it also served as a scaffold for more lamellar tissue at the edges. The lamelar bone callus showed thinner mineral particles, but a higher degree of alignment in both, mineral particles and the LCN. The cortex showed the highest values for mineral length, thickness and degree of orientation. At the same time, the lacunae number density was 34\% lower and the lacunar volume 40\% smaller compared to bony callus. The transition zone between cortical and callus regions showed a continuous convergence of bone mineral properties and lacunae shape. Although only a few canaliculi connected callus and the cortical region, this indicates that communication between osteocytes of both tissues should be possible. The presented correlations between LCN architecture and mineral properties across tissue types may suggest that osteocytes have an active role in mineralization processes of healing. A mouse model for the disease marfan syndrome, which includes a genetic defect in the fibrillin-1 gene, was investigated. In humans, Marfan syndrome is characterized by a range of clinical symptoms such as long bone overgrowth, loose joints, reduced bone mineral density, compromised bone microarchitecture, and increased fracture rates. Thus, fibrillin-1 seems to play a role in the skeletal homeostasis. Therefore, the present work studied how marfan syndrome alters LCN architecture and the surrounding bone matrix. The mice with marfan syndrome showed longer tibiae than their healthy littermates from an age of seven weeks onwards. In contrast, the cortical development appeared retarded, which was observed across all measured characteristics, i. e. lower endocortical bone formation, looser and less organized lacuno-canalicular network, less collagen orientation, thinner and shorter mineral particles. In each of the three model systems, this study found that changes in the LCN architecture spatially correlated with bone matrix material parameters. While not knowing the exact mechanism, these results provide indications that osteocytes can actively manipulate a mineral reservoir located around the canaliculi to make a quickly accessible contribution to mineral homeostasis. However, this interaction is most likely not one-sided, but could be understood as an interplay between osteocytes and extra-cellular matrix, since the bone matrix contains biochemical signaling molecules (e.g. non-collagenous proteins) that can change osteocyte behavior. Bone (re)modeling can therefore not only be understood as a method for removing defects or adapting to external mechanical stimuli, but also for increasing the efficiency of possible osteocyte-mineral interactions during bone homeostasis. With these findings, it seems reasonable to consider osteocytes as a target for drug development related to bone diseases that cause changes in bone composition and mechanical properties. It will most likely require the combined effort of materials scientists, cell biologists, and molecular biologists to gain a deeper understanding of how bone cells respond to their material environment.}, language = {en} } @phdthesis{Ihlenburg2023, author = {Ihlenburg, Ramona}, title = {Sulfobetainhydrogele mit biomedizinischem Anwendungspotential und deren Netzwerkcharakterisierung im Gleichgewichtsquellzustand}, doi = {10.25932/publishup-60709}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607093}, school = {Universit{\"a}t Potsdam}, pages = {xi, 228, xlviii}, year = {2023}, abstract = {In dieser Dissertation konnten erfolgreich mechanisch stabile Hydrogele {\"u}ber eine freie radikalische Polymerisation (FRP) in Wasser synthetisiert werden. Dabei diente vor allem das Sulfobetain SPE als Monomer. Dieses wurde mit dem {\"u}ber eine nukleophile Substitution erster bzw. zweiter Ordnung hergestellten Vernetzer TMBEMPA/Br umgesetzt. Die entstandenen Netzwerke wurden im Gleichgewichtsquellzustand im Wesentlichen mittels Niederfeld-Kernresonanzspektroskopie, R{\"o}ntgenkleinwinkelstreuung (SAXS), Rasterelektronenmikroskopie mit Tieftemperaturtechnik (Kryo-REM), dynamisch-mechanische Analyse (DMA), Rheologie, thermogravimetrische Analyse (TGA) und dynamische Differenzkalorimetrie (DSC) analysiert. Das hierarchisch aufgebaute Netzwerk wurde anschließend f{\"u}r die matrixgesteuerten Mineralisation von Calciumphosphat und -carbonat genutzt. {\"U}ber das alternierende Eintauchverfahren (engl. „alternate soaking method") und der Variation von Mineralisationsparametern, wie pH-Wert, Konzentration c und Temperatur T konnten dann verschiedene Modifikationen des Calciumphosphats generiert werden. Das entstandene Hybridmaterial wurde qualitativ mittels R{\"o}ntgenpulverdiffraktometrie (XRD), abgeschw{\"a}chte Totalreflexion-fouriertransformierte Infrarot Spektroskopie (ATR-FTIR), Raman-Spektroskopie, Rasterelektronenmikroskopie (REM) mit energiedispersiver R{\"o}ntgenspektroskopie (EDXS) und optischer Mikroskopie (OM) als auch quantitative mittels Gravimetrie und TGA analysiert. F{\"u}r die potentielle Verwendung in der Medizintechnik, z.B. als Implantatmaterial, ist die grundlegende Einsch{\"a}tzung der Wechselwirkung zwischen Hydrogel bzw. Hybridmaterial und verschiedener Zelltypen unerl{\"a}sslich. Dazu wurden verschiedene Zelltypen, wie Einzeller, Bakterien und adulte Stammzellen verwendet. Die Wechselwirkung mit Peptidsequenzen von Phagen komplettiert das biologische Unterkapitel. Hydrogele sind mannigfaltig einsetzbar. Diese Arbeit fasst daher weitere Projektperspektiven, auch außerhalb des biomedizinischem Anwendungsspektrums, auf. So konnten erste Ans{\"a}tze zur serienm{\"a}ßige bzw. maßgeschneiderte Produktion {\"u}ber das „Inkjet" Verfahren erreicht werden. Um dies erm{\"o}glichen zu k{\"o}nnen wurden erfolgreich weitere Synthesestrategien, wie die Photopolymerisation und die redoxinitiierte Polymerisation, ausgenutzt. Auch die Eignung als Filtermaterial oder Superabsorber wurde analysiert.}, language = {de} }