@article{BolotovSmirnovOsipovetal.2017, author = {Bolotov, Maxim I. and Smirnov, Lev A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Breathing chimera in a system of phase oscillators}, series = {JETP Letters}, volume = {106}, journal = {JETP Letters}, publisher = {Pleiades Publ.}, address = {New York}, issn = {0021-3640}, doi = {10.1134/S0021364017180059}, pages = {393 -- 399}, year = {2017}, abstract = {Chimera states consisting of synchronous and asynchronous domains in a medium of nonlinearly coupled phase oscillators have been considered. Stationary inhomogeneous solutions of the Ott-Antonsen equation for a complex order parameter that correspond to fundamental chimeras have been constructed. The direct numerical simulation has shown that these structures under certain conditions are transformed to oscillatory (breathing) chimera regimes because of the development of instability.}, language = {en} } @article{SafdariCherstvyChechkinetal.2017, author = {Safdari, Hadiseh and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna and Metzler, Ralf}, title = {Aging underdamped scaled Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.012120}, pages = {15}, year = {2017}, abstract = {We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble-and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.}, language = {en} } @article{RichterNuzaFoxetal.2017, author = {Richter, Philipp and Nuza, S. E. and Fox, Andrew J. and Wakker, Bart P. and Lehner, N. and Ben Bekhti, Nadya and Fechner, Cora and Wendt, Martin and Howk, J. Christopher and Muzahid, S. and Ganguly, R. and Charlton, Jane C.}, title = {An HST/COS legacy survey of high-velocity ultraviolet absorption in the}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {607}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201630081}, pages = {90}, year = {2017}, abstract = {Context. The Milky Way is surrounded by large amounts of diffuse gaseous matter that connects the stellar body of our Galaxy with its large-scale Local Group (LG) environment. Aims. To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extragalactic background sources. The UV data are obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and are supplemented by 21 cm radio observations of neutral hydrogen. Methods. Along 270 sightlines we measure metal absorption in the lines of Si II, Si III, C II, and C IV and associated H I 21 cm emission in HVCs in the velocity range vertical bar v(LSR)vertical bar = 100-500 km s(-1). With this unprecedented large HVC sample we were able to improve the statistics on HVC covering fractions, ionization conditions, small-scale structure, CGM mass, and inflow rate. For the first time, we determine robustly the angular two point correlation function of the high-velocity absorbers, systematically analyze antipodal sightlines on the celestial sphere, and compare the HVC absorption characteristics with that of damped Lyman alpha absorbers (DLAs) and constrained cosmological simulations of the LG (CLUES project).}, language = {en} } @article{Richter2017, author = {Richter, Philipp}, title = {Gas accretion onto the Milky Way}, series = {Astrophysics and space science library}, volume = {430}, journal = {Astrophysics and space science library}, editor = {Fox, Andrew J. and Dav{\´e}, Romeel}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-52512-9}, issn = {0067-0057}, doi = {10.1007/978-3-319-52512-9_2}, pages = {15 -- 47}, year = {2017}, abstract = {The Milky Way is surrounded by large amounts of gaseous matter that are slowly being accreted over cosmic timescales to support star formation in the disk. The corresponding gas-accretion rate represents a key parameter for the past, present, and future evolution of the Milky Way. In this chapter, we discuss our current understanding of gas accretion processes in the Galaxy by reviewing past and recent observational and theoretical studies. The first part of this review deals with the spatial distribution of the different gas phases in the Milky Way halo, the origin of the gas, and its total mass. The second part discusses the gas dynamics and the physical processes that regulate the gas flow from the outer Galactic halo to the disk. From the most recent studies follows that the present-day gas accretion rate of the Milky Way is a few solar masses per year, which is sufficient to maintain the Galaxy's star-formation rate at its current level.}, language = {en} } @misc{HempelKoseskaNikoloskietal.2017, author = {Hempel, Sabrina and Koseska, Aneta and Nikoloski, Zoran and Kurths, J{\"u}rgen}, title = {Unraveling gene regulatory networks from time-resolved gene expression data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400924}, pages = {26}, year = {2017}, abstract = {Background: Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications. Results: Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in this study. Conclusions: Our study is intended to serve as a guide for choosing a particular combination of similarity measures and scoring schemes suitable for reconstruction of gene regulatory networks from short time series data. We show that further improvement of algorithms for reverse engineering can be obtained if one considers measures that are rooted in the study of symbolic dynamics or ranks, in contrast to the application of common similarity measures which do not consider the temporal character of the employed data. Moreover, we establish that the asymmetric weighting scoring scheme together with symbol based measures (for low noise level) and rank based measures (for high noise level) are the most suitable choices.}, language = {en} } @article{RamosBuilesJaramilloPovedaetal.2017, author = {Ramos, Antonio M. T. and Builes-Jaramillo, Alejandro and Poveda, German and Goswami, Bedartha and Macau, Elbert E. N. and Kurths, J{\"u}rgen and Marwan, Norbert}, title = {Recurrence measure of conditional dependence and applications}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.052206}, pages = {8}, year = {2017}, abstract = {Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Herewe propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.}, language = {en} } @article{MahataPandayRupakhetietal.2017, author = {Mahata, Khadak Singh and Panday, Arnico Kumar and Rupakheti, Maheswar and Singh, Ashish and Naja, Manish and Lawrence, Mark}, title = {Seasonal and diurnal variations in methane and carbon dioxide in the Kathmandu Valley in the foothills of the central Himalayas}, series = {Atmospheric Chemistry and Physics}, volume = {17}, journal = {Atmospheric Chemistry and Physics}, number = {20}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1680-7316}, doi = {10.5194/acp-17-12573-2017}, pages = {12573 -- 12596}, year = {2017}, abstract = {The SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) international air pollution measurement campaign was carried out from December 2012 to June 2013 in the Kathmandu Valley and surrounding regions in Nepal. The Kathmandu Valley is a bowl-shaped basin with a severe air pollution problem. This paper reports measurements of two major greenhouse gases (GHGs), methane (CH4) and carbon dioxide (CO2), along with the pollutant CO, that began during the campaign and were extended for 1 year at the SusKat-ABC supersite in Bode, a semi-urban location in the Kathmandu Valley. Simultaneous measurements were also made during 2015 in Bode and a nearby rural site (Chanban) similar to 25 km (aerial distance) to the southwest of Bode on the other side of a tall ridge. The ambient mixing ratios of methane (CH4), carbon dioxide (CO2), water vapor, and carbon monoxide (CO) were measured with a cavity ring-down spectrometer (G2401; Picarro, USA) along with meteorological parameters for 1 year (March 2013-March 2014). These measurements are the first of their kind in the central Himalayan foothills. At Bode, the annual average mixing ratios of CO2 and CH4 were 419.3 (+/- 6.0) ppm and 2.192 (+/- 0.066) ppm, respectively. These values are higher than the levels observed at background sites such as Mauna Loa, USA (CO2: 396.8 +/- 2.0 ppm, CH4: 1.831 +/- 0.110 ppm) and Waliguan, China (CO2: 397.7 +/- 3.6 ppm, CH4: 1.879 +/- 0.009 ppm) during the same period and at other urban and semi-urban sites in the region, such as Ahmedabad and Shadnagar (India). They varied slightly across the seasons at Bode, with seasonal average CH4 mixing ratios of 2.157 (+/- 0.230) ppm in the pre-monsoon season, 2.199 (+/- 0.241) ppm in the monsoon, 2.210 (+/- 0.200) ppm in the post-monsoon, and 2.214 (+/- 0.209) ppm in the winter season. The average CO2 mixing ratios were 426.2 (+/- 25.5) ppm in the pre-monsoon, 413.5 (+/- 24.2) ppm in the monsoon, 417.3 (+/- 23.1) ppm in the postmonsoon, and 421.9 (+/- 20.3) ppm in the winter season. The maximum seasonal mean mixing ratio of CH4 in winter was only 0.057 ppm or 2.6\% higher than the seasonal minimum during the pre-monsoon period, while CO2 was 12.8 ppm or 3.1\% higher during the pre-monsoon period (seasonal maximum) than during the monsoon (seasonal minimum). On the other hand, the CO mixing ratio at Bode was 191\% higher during the winter than during the monsoon season. The enhancement in CO2 mixing ratios during the pre-monsoon season is associated with additional CO2 emissions from forest fires and agro-residue burning in northern South Asia in addition to local emissions in the Kathmandu Valley. Published CO = CO2 ratios of different emission sources in Nepal and India were compared with the observed CO = CO2 ratios in this study. This comparison suggested that the major sources in the Kathmandu Valley were residential cooking and vehicle exhaust in all seasons except winter. In winter, brick kiln emissions were a major source. Simultaneous measurements in Bode and Chanban (15 July-3 October 2015) revealed that the mixing ratios of CO2, CH4, and CO were 3.8, 12, and 64\% higher in Bode than Chanban. The Kathmandu Valley thus has significant emissions from local sources, which can also be attributed to its bowl-shaped geography that is conducive to pollution build-up. At Bode, all three gas species (CO2, CH4, and CO) showed strong diurnal patterns in their mixing ratios with a pronounced morning peak (ca. 08:00), a dip in the afternoon, and a gradual increase again through the night until the next morning. CH4 and CO at Chanban, however, did not show any noticeable diurnal variations. These measurements provide the first insights into the diurnal and seasonal variation in key greenhouse gases and air pollutants and their local and regional sources, which is important information for atmospheric research in the region.}, language = {en} } @article{AceroAloisioAmansetal.2017, author = {Acero, F. and Aloisio, R. and Amans, J. and Amato, Elena and Antonelli, L. A. and Aramo, C. and Armstrong, T. and Arqueros, F. and Asano, Katsuaki and Ashley, M. and Backes, M. and Balazs, C. and Balzer, A. and Bamba, Aya and Barkov, Maxim and Barrio, J. A. and Benbow, Wystan and Bernloehr, K. and Beshley, V. and Bigongiari, C. and Biland, A. and Bilinsky, A. and Bissaldi, Elisabetta and Biteau, J. and Blanch, O. and Blasi, P. and Blazek, J. and Boisson, C. and Bonanno, G. and Bonardi, A. and Bonavolonta, C. and Bonnoli, G. and Braiding, C. and Brau-Nogue, S. and Bregeon, J. and Brown, A. M. and Bugaev, V. and Bulgarelli, A. and Bulik, T. and Burton, Michael and Burtovoi, A. and Busetto, G. and Bottcher, M. and Cameron, R. and Capalbi, M. and Caproni, Anderson and Caraveo, P. and Carosi, R. and Cascone, E. and Cerruti, M. and Chaty, Sylvain and Chen, A. and Chen, X. and Chernyakova, M. and Chikawa, M. and Chudoba, J. and Cohen-Tanugi, J. and Colafrancesco, S. and Conforti, V. and Contreras, J. L. and Costa, A. and Cotter, G. and Covino, Stefano and Covone, G. and Cumani, P. and Cusumano, G. and Daniel, M. and Dazzi, F. and De Angelis, A. and De Cesare, G. and De Franco, A. and De Frondat, F. and Dal Pino, E. M. de Gouveia and De Lisio, C. and Lopez, R. de los Reyes and De Lotto, B. and de Naurois, M. and De Palma, F. and Del Santo, M. and Delgado, C. and della Volpe, D. and Di Girolamo, T. and Di Giulio, C. and Di Pierro, F. and Di Venere, L. and Doro, M. and Dournaux, J. and Dumas, D. and Dwarkadas, Vikram V. and Diaz, C. and Ebr, J. and Egberts, Kathrin and Einecke, S. and Elsaesser, D. and Eschbach, S. and Falceta-Goncalves, D. and Fasola, G. and Fedorova, E. and Fernandez-Barral, A. and Ferrand, Gilles and Fesquet, M. and Fiandrini, E. and Fiasson, A. and Filipovic, Miroslav D. and Fioretti, V. and Font, L. and Fontaine, Gilles and Franco, F. J. and Freixas Coromina, L. and Fujita, Yutaka and Fukui, Y. and Funk, S. and Forster, A. and Gadola, A. and Lopez, R. Garcia and Garczarczyk, M. and Giglietto, N. and Giordano, F. and Giuliani, A. and Glicenstein, J. and Gnatyk, R. and Goldoni, P. and Grabarczyk, T. and Graciani, R. and Graham, J. and Grandi, P. and Granot, Jonathan and Green, A. J. and Griffiths, S. and Gunji, S. and Hakobyan, H. and Hara, S. and Hassan, T. and Hayashida, M. and Heller, M. and Helo, J. C. and Hinton, J. and Hnatyk, B. and Huet, J. and Huetten, M. and Humensky, T. B. and Hussein, M. and Horandel, J. and Ikeno, Y. and Inada, T. and Inome, Y. and Inoue, S. and Inoue, T. and Inoue, Y. and Ioka, K. and Iori, Maurizio and Jacquemier, J. and Janecek, P. and Jankowsky, D. and Jung, I. and Kaaret, P. and Katagiri, H. and Kimeswenger, S. and Kimura, Shigeo S. and Knodlseder, J. and Koch, B. and Kocot, J. and Kohri, K. and Komin, N. and Konno, Y. and Kosack, K. and Koyama, S. and Kraus, Michaela and Kubo, Hidetoshi and Mezek, G. Kukec and Kushida, J. and La Palombara, N. and Lalik, K. and Lamanna, G. and Landt, H. and Lapington, J. and Laporte, P. and Lee, S. and Lees, J. and Lefaucheur, J. and Lenain, J. -P. and Leto, Giuseppe and Lindfors, E. and Lohse, T. and Lombardi, S. and Longo, F. and Lopez, M. and Lucarelli, F. and Luque-Escamilla, Pedro Luis and Lopez-Coto, R. and Maccarone, M. C. and Maier, G. and Malaguti, G. and Mandat, D. and Maneva, G. and Mangano, S. and Marcowith, Alexandre and Marti, J. and Martinez, M. and Martinez, G. and Masuda, S. and Maurin, G. and Maxted, N. and Melioli, Claudio and Mineo, T. and Mirabal, N. and Mizuno, T. and Moderski, R. and Mohammed, M. and Montaruli, T. and Moralejo, A. and Mori, K. and Morlino, G. and Morselli, A. and Moulin, Emmanuel and Mukherjee, R. and Mundell, C. and Muraishi, H. and Murase, Kohta and Nagataki, Shigehiro and Nagayoshi, T. and Naito, T. and Nakajima, D. and Nakamori, T. and Nemmen, R. and Niemiec, Jacek and Nieto, D. and Nievas-Rosillo, M. and Nikolajuk, M. and Nishijima, K. and Noda, K. and Nogues, L. and Nosek, D. and Novosyadlyj, B. and Nozaki, S. and Ohira, Yutaka and Ohishi, M. and Ohm, S. and Okumura, A. and Ong, R. A. and Orito, R. and Orlati, A. and Ostrowski, M. and Oya, I. and Padovani, Marco and Palacio, J. and Palatka, M. and Paredes, Josep M. and Pavy, S. and Persic, M. and Petrucci, P. and Petruk, Oleh and Pisarski, A. and Pohl, Martin and Porcelli, A. and Prandini, E. and Prast, J. and Principe, G. and Prouza, M. and Pueschel, Elisa and Puelhofer, G. and Quirrenbach, A. and Rameez, M. and Reimer, O. and Renaud, M. and Ribo, M. and Rico, J. and Rizi, V. and Rodriguez, J. and Fernandez, G. Rodriguez and Rodriguez Vazquez, J. J. and Romano, Patrizia and Romeo, G. and Rosado, J. and Rousselle, J. and Rowell, G. and Rudak, B. and Sadeh, I. and Safi-Harb, S. and Saito, T. and Sakaki, N. and Sanchez, D. and Sangiorgi, P. and Sano, H. and Santander, M. and Sarkar, S. and Sawada, M. and Schioppa, E. J. and Schoorlemmer, H. and Schovanek, P. and Schussler, F. and Sergijenko, O. and Servillat, M. and Shalchi, A. and Shellard, R. C. and Siejkowski, H. and Sillanpaa, A. and Simone, D. and Sliusar, V. and Sol, H. and Stanic, S. and Starling, R. and Stawarz, L. and Stefanik, S. and Stephan, M. and Stolarczyk, T. and Szanecki, M. and Szepieniec, T. and Tagliaferri, G. and Tajima, H. and Takahashi, M. and Takeda, J. and Tanaka, M. and Tanaka, S. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Terada, Y. and Tescaro, D. and Teshima, M. and Testa, V. and Thoudam, S. and Tokanai, F. and Torres, D. F. and Torresi, E. and Tosti, G. and Townsley, C. and Travnicek, P. and Trichard, C. and Trifoglio, M. and Tsujimoto, S. and Vagelli, V. and Vallania, P. and Valore, L. and van Driel, W. and van Eldik, C. and Vandenbroucke, Justin and Vassiliev, V. and Vecchi, M. and Vercellone, Stefano and Vergani, S. and Vigorito, C. and Vorobiov, S. and Vrastil, M. and Vazquez Acosta, M. L. and Wagner, S. J. and Wagner, R. and Wakely, S. P. and Walter, R. and Ward, J. E. and Watson, J. J. and Weinstein, A. and White, M. and White, R. and Wierzcholska, A. and Wilcox, P. and Williams, D. A. and Wischnewski, R. and Wojcik, P. and Yamamoto, T. and Yamamoto, H. and Yamazaki, Ryo and Yanagita, S. and Yang, L. and Yoshida, T. and Yoshida, M. and Yoshiike, S. and Yoshikoshi, T. and Zacharias, M. and Zampieri, L. and Zanin, R. and Zavrtanik, M. and Zavrtanik, D. and Zdziarski, A. and Zech, Alraune and Zechlin, Hannes and Zhdanov, V. and Ziegler, A. and Zorn, J.}, title = {Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {840}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa6d67}, pages = {14}, year = {2017}, abstract = {We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Bourbeau, E. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Griffin, S. and Huetten, M. and Hanna, D. and Holder, J. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, Nahee and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Slane, P. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Weisgarber, T. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Gamma-ray Observations of Tycho's Supernova Remnant with VERITAS and Fermi}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/1/23}, pages = {8}, year = {2017}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, Ralph and Bourbeau, E. and Bouvier, A. and Buchovecky, M. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Ciupik, L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Hutten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Williams, D. A. and Zitzer, B.}, title = {Gamma-ray observations under bright moonlight with VERITAS}, series = {Astroparticle physics}, volume = {91}, journal = {Astroparticle physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-6505}, doi = {10.1016/j.astropartphys.2017.03.001}, pages = {34 -- 43}, year = {2017}, abstract = {Imaging atmospheric Cherenkov telescopes (IACTs) are equipped with sensitive photomultiplier tube (PMT) cameras. Exposure to high levels of background illumination degrades the efficiency of and potentially destroys these photo-detectors over time, so IACTs cannot be operated in the same configuration in the presence of bright moonlight as under dark skies. Since September 2012, observations have been carried out with the VERITAS IACTs under bright moonlight (defined as about three times the night-sky-background (NSB) of a dark extragalactic field, typically occurring when Moon illumination > 35\%) in two observing modes, firstly by reducing the voltage applied to the PMTs and, secondly, with the addition of ultra-violet (UV) bandpass filters to the cameras. This has allowed observations at up to about 30 times previous NSB levels (around 80\% Moon illumination), resulting in 30\% more observing time between the two modes over the course of a year. These additional observations have already allowed for the detection of a flare from the 1ES 1727 + 502 and for an observing program targeting a measurement of the cosmic-ray positron fraction. We provide details of these new observing modes and their performance relative to the standard VERITAS observations. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{BohdanNiemiecKobzaretal.2017, author = {Bohdan, Artem and Niemiec, Jacek and Kobzar, Oleh and Pohl, Martin}, title = {Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {847}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa872a}, pages = {17}, year = {2017}, abstract = {We perform particle-in-cell simulations of perpendicular nonrelativistic collisionless shocks to study electron heating and pre-acceleration for parameters that permit the extrapolation to the conditions at young supernova remnants. Our high-resolution large-scale numerical experiments sample a representative portion of the shock surface and demonstrate that the efficiency of electron injection is strongly modulated with the phase of the shock reformation. For plasmas with low and moderate temperature (plasma beta beta p =5.10(-4) and 0.5 beta p =), we explore the nonlinear shock structure and electron pre-acceleration for various orientations of the large-scale magnetic field with respect to the simulation plane, while keeping it at 90 degrees to the shock normal. Ion reflection off of the shock leads to the formation of magnetic filaments in the shock ramp, resulting from Weibel-type instabilities, and electrostatic Buneman modes in the shock foot. In all of the cases under study, the latter provides first-stage electron energization through the shock-surfing acceleration mechanism. The subsequent energization strongly depends on the field orientation and proceeds through adiabatic or second-order Fermi acceleration processes for configurations with the out-of-plane and in-plane field components, respectively. For strictly out-of-plane field, the fraction of suprathermal electrons is much higher than for other configurations, because only in this case are the Buneman modes fully captured by the 2D simulation grid. Shocks in plasma with moderate bp provide more efficient pre-acceleration. The relevance of our results to the physics of fully 3D systems is discussed.}, language = {en} } @article{FraschettiPohl2017, author = {Fraschetti, F. and Pohl, Martin}, title = {Particle acceleration model for the broad-band baseline spectrum of the Crab nebula}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1833}, pages = {4866 -- 4874}, year = {2017}, abstract = {We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.}, language = {en} } @article{GaoPohlWinter2017, author = {Gao, Shan and Pohl, Martin and Winter, Walter}, title = {On the Direct Correlation between Gamma-Rays and PeV Neutrinos from Blazars}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {843}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa7754}, pages = {19}, year = {2017}, abstract = {We study the frequently used assumption in multi-messenger astrophysics that the gamma-ray and neutrino fluxes are directly connected because they are assumed to be produced by the same photohadronic production chain. An interesting candidate source for this test is the flat-spectrum radio quasar PKS B1424-418, which recently called attention to a potential correlation between an IceCube PeV neutrino event and its burst phase. We simulate both the multi-waveband photon and the neutrino emission from this source using a self-consistent radiation model. We demonstrate that a simple hadronic model cannot adequately describe the spectral energy distribution for this source, but a lepto-hadronic model with a subdominant hadronic component can reproduce the multi-waveband photon spectrum observed during various activity phases of the blazar. As a conclusion, up to about 0.3 neutrino events may coincide with the burst, which implies that the leptonic contribution dominates in the relevant energy band. We also demonstrate that the time-wise correlation between the neutrino event and burst phase is weak.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Discovery of Very-high-energy Emission from RGB J2243+203 and Derivation of Its Redshift Upper Limit}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {233}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aa8d76}, pages = {1188 -- 1204}, year = {2017}, abstract = {Very-high-energy (VHE; > 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 2014 December 21 and 24. The VERITAS energy spectrum from this source can be fitted by a power law with a photon index of 4.6 +/- 0.5, and a flux normalization at 0.15 TeV of (6.3 +/- 1.1) x 10(-10) cm(-2) s(-1) TeV-1. The integrated Fermi-LAT flux from 1 to 100 GeV during the VERITAS detection is (4.1 +/- 0.8) x 10(-8) cm(-2) s(-1), which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0 +/- 0.1 x 10(-9) cm(-2) s(-1)). The detection with VERITAS triggered observations in the X-ray band with the Swift-XRT. However, due to scheduling constraints Swift-XRT observations were performed 67 hr after the VERITAS detection, rather than simultaneously with the VERITAS observations. The observed X-ray energy spectrum between 2 and 10 keV can be fitted with a power law with a spectral index of 2.7 +/- 0.2, and the integrated photon flux in the same energy band is (3.6 +/- 0.6) x 10(-13) cm(-2) s(-1). EBL-model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9 to z < 1.1.}, language = {en} } @article{NishikawaMizunoGomezetal.2017, author = {Nishikawa, Ken-Ichi and Mizuno, Yosuke and Gomez, Jose L. and Dutan, Ioana and Meli, Athina and White, Charley and Niemiec, Jacek and Kobzar, Oleh and Pohl, Martin and Frederiksen, Jacob Trier and Nordlund, Ake and Sol, Helene and Hardee, Philip E. and Hartmann, Dieter H.}, title = {Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields: Dependence on Jet Radius}, series = {Galaxies : open access journal}, volume = {5}, journal = {Galaxies : open access journal}, publisher = {MDPI}, address = {Basel}, issn = {2075-4434}, doi = {10.3390/galaxies5040058}, pages = {7}, year = {2017}, abstract = {In this study, we investigate the interaction of jets with their environment at a microscopic level, which is a key open question in the study of relativistic jets. Using small simulation systems during past research, we initially studied the evolution of both electron-proton and electron-positron relativistic jets containing helical magnetic fields, by focusing on their interactions with an ambient plasma. Here, using larger jet radii, we have performed simulations of global jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities, such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the mushroom instability (MI). We found that the evolution of global jets strongly depends on the size of the jet radius. For example, phase bunching of jet electrons, in particular in the electron-proton jet, is mixed with a larger jet radius as a result of the more complicated structures of magnetic fields with excited kinetic instabilities. In our simulation, these kinetic instabilities led to new types of instabilities in global jets. In the electron-proton jet simulation, a modified recollimation occurred, and jet electrons were strongly perturbed. In the electron-positron jet simulation, mixed kinetic instabilities occurred early, followed by a turbulence-like structure. Simulations using much larger (and longer) systems are required in order to further thoroughly investigate the evolution of global jets containing helical magnetic fields.}, language = {en} } @phdthesis{Hakansson2017, author = {H{\aa}kansson, Nils}, title = {A Dark Matter line search using 3D-modeling of Cherenkov showers below 10 TeV with VERITAS}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-397670}, school = {Universit{\"a}t Potsdam}, pages = {107, xxxvi}, year = {2017}, abstract = {Dark matter, DM, has not yet been directly observed, but it has a very solid theoretical basis. There are observations that provide indirect evidence, like galactic rotation curves that show that the galaxies are rotating too fast to keep their constituent parts, and galaxy clusters that bends the light coming from behind-lying galaxies more than expected with respect to the mass that can be calculated from what can be visibly seen. These observations, among many others, can be explained with theories that include DM. The missing piece is to detect something that can exclusively be explained by DM. Direct observation in a particle accelerator is one way and indirect detection using telescopes is another. This thesis is focused on the latter method. The Very Energetic Radiation Imaging Telescope Array System, V ERITAS, is a telescope array that detects Cherenkov radiation. Theory predicts that DM particles annihilate into, e.g., a γγ pair and create a distinctive energy spectrum when detected by such telescopes, e.i., a monoenergetic line at the same energy as the particle mass. This so called "smoking-gun" signature is sought with a sliding window line search within the sub-range ∼ 0.3 - 10 TeV of the VERITAS energy range, ∼ 0.01 - 30 TeV. Standard analysis within the VERITAS collaboration uses Hillas analysis and look-up tables, acquired by analysing particle simulations, to calculate the energy of the particle causing the Cherenkov shower. In this thesis, an improved analysis method has been used. Modelling each shower as a 3Dgaussian should increase the energy recreation quality. Five dwarf spheroidal galaxies were chosen as targets with a total of ∼ 224 hours of data. The targets were analysed individually and stacked. Particle simulations were based on two simulation packages, CARE and GrISU. Improvements have been made to the energy resolution and bias correction, up to a few percent each, in comparison to standard analysis. Nevertheless, no line with a relevant significance has been detected. The most promising line is at an energy of ∼ 422 GeV with an upper limit cross section of 8.10 · 10^-24 cm^3 s^-1 and a significance of ∼ 2.73 σ, before trials correction and ∼ 1.56 σ after. Upper limit cross sections have also been calculated for the γγ annihilation process and four other outcomes. The limits are in line with current limits using other methods, from ∼ 8.56 · 10^-26 - 6.61 · 10^-23 cm^3s^-1. Future larger telescope arrays, like the upcoming Cherenkov Telescope Array, CTA, will provide better results with the help of this analysis method.}, language = {en} } @article{ChenSavateevPronkinetal.2017, author = {Chen, Zupeng and Savateev, Aleksandr and Pronkin, Sergey and Papaefthimiou, Vasiliki and Wolff, Christian Michael and Willinger, Marc Georg and Willinger, Elena and Neher, Dieter and Antonietti, Markus and Dontsova, Dariya}, title = {"The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts}, series = {Advanced materials}, volume = {29}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201700555}, pages = {21800 -- 21806}, year = {2017}, abstract = {Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.}, language = {en} } @article{RanRolandLoveetal.2017, author = {Ran, Niva A. and Roland, Steffen and Love, John A. and Savikhin, Victoria and Takacs, Christopher J. and Fu, Yao-Tsung and Li, Hong and Coropceanu, Veaceslav and Liu, Xiaofeng and Bredas, Jean-Luc and Bazan, Guillermo C. and Toney, Michael F. and Neher, Dieter and Thuc-Quyen Nguyen,}, title = {Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-017-00107-4}, pages = {9}, year = {2017}, abstract = {A long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics-however, the results have important implications on the operation of all optoelectronic devices with donor/ acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting in larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.}, language = {en} } @article{OrtizAmezcuaGuerreroRascadoJoseGranadosMunozetal.2017, author = {Ortiz-Amezcua, Pablo and Guerrero-Rascado, Juan Luis and Jose Granados-Munoz, Maria and Benavent-Oltra, Jose Antonio and B{\"o}ckmann, Christine and Samaras, Stefanos and Stachlewska, Iwona Sylwia and Janicka, Lucja and Baars, Holger and Bohlmann, Stephanie and Alados-Arboledas, Lucas}, title = {Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations}, series = {Atmospheric Chemistry and Physics}, volume = {17}, journal = {Atmospheric Chemistry and Physics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1680-7316}, doi = {10.5194/acp-17-5931-2017}, pages = {5931 -- 5946}, year = {2017}, abstract = {Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1-2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30\% of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: color ratio of lidar ratios (LR532/LR355) around 2, alpha-related angstrom exponents of less than 1, effective radii of 0.3 mu m and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established.}, language = {en} } @article{LechleitnerBreitenbachRehfeldetal.2017, author = {Lechleitner, Franziska A. and Breitenbach, Sebastian Franz Martin and Rehfeld, Kira and Ridley, Harriet E. and Asmerom, Yemane and Prufer, Keith M. and Marwan, Norbert and Goswami, Bedartha and Kennett, Douglas J. and Aquino, Valorie V. and Polyak, Victor and Haug, Gerald H. and Eglinton, Timothy I. and Baldini, James U. L.}, title = {Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep45809}, pages = {9}, year = {2017}, abstract = {The presence of a low-to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low-to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low-to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics.}, language = {en} }