@phdthesis{Qin2019, author = {Qin, Qing}, title = {Chemical functionalization of porous carbon-based materials to enable novel modes for efficient electrochemical N2 fixation}, doi = {10.25932/publishup-44339}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-443397}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2019}, abstract = {The central motivation of the thesis was to provide possible solutions and concepts to improve the performance (e.g. activity and selectivity) of electrochemical N2 reduction reaction (NRR). Given that porous carbon-based materials usually exhibit a broad range of structural properties, they could be promising NRR catalysts. Therefore, the advanced design of novel porous carbon-based materials and the investigation of their application in electrocatalytic NRR including the particular reaction mechanisms are the most crucial points to be addressed. In this regard, three main topics were investigated. All of them are related to the functionalization of porous carbon for electrochemical NRR or other electrocatalytic reactions. In chapter 3, a novel C-TixOy/C nanocomposite has been described that has been obtained via simple pyrolysis of MIL-125(Ti). A novel mode for N2 activation is achieved by doping carbon atoms from nearby porous carbon into the anion lattice of TixOy. By comparing the NRR performance of M-Ts and by carrying out DFT calculations, it is found that the existence of (O-)Ti-C bonds in C-doped TixOy can largely improve the ability to activate and reduce N2 as compared to unoccupied OVs in TiO2. The strategy of rationally doping heteroatoms into the anion lattice of transition metal oxides to create active centers may open many new opportunities beyond the use of noble metal-based catalysts also for other reactions that require the activation of small molecules as well. In chapter 4, a novel catalyst construction composed of Au single atoms decorated on the surface of NDPCs was reported. The introduction of Au single atoms leads to active reaction sites, which are stabilized by the N species present in NDPCs. Thus, the interaction within as-prepared AuSAs-NDPCs catalysts enabled promising performance for electrochemical NRR. For the reaction mechanism, Au single sites and N or C species can act as Frustrated Lewis pairs (FLPs) to enhance the electron donation and back-donation process to activate N2 molecules. This work provides new opportunities for catalyst design in order to achieve efficient N2 fixation at ambient conditions by utilizing recycled electric energy. The last topic described in chapter 5 mainly focused on the synthesis of dual heteroatom-doped porous carbon from simple precursors. The introduction of N and B heteroatoms leads to the construction of N-B motives and Frustrated Lewis pairs in a microporous architecture which is also rich in point defects. This can improve the strength of adsorption of different reactants (N2 and HMF) and thus their activation. As a result, BNC-2 exhibits a desirable electrochemical NRR and HMF oxidation performance. Gas adsorption experiments have been used as a simple tool to elucidate the relationship between the structure and catalytic activity. This work provides novel and deep insights into the rational design and the origin of activity in metal-free electrocatalysts and enables a physically viable discussion of the active motives, as well as the search for their further applications. Throughout this thesis, the ubiquitous problems of low selectivity and activity of electrochemical NRR are tackled by designing porous carbon-based catalysts with high efficiency and exploring their catalytic mechanisms. The structure-performance relationships and mechanisms of activation of the relatively inert N2 molecules are revealed by either experimental results or DFT calculations. These fundamental understandings pave way for a future optimal design and targeted promotion of NRR catalysts with porous carbon-based structure, as well as study of new N2 activation modes.}, language = {en} } @phdthesis{Harmanli2020, author = {Harmanli, İpek}, title = {Towards catalytic activation of nitrogen in ionic liquid/nanoporous carbon interfaces for electrochemical ammonia synthesis}, doi = {10.25932/publishup-48359}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483591}, school = {Universit{\"a}t Potsdam}, pages = {v, 126}, year = {2020}, abstract = {Ammonia is a chemical of fundamental importance for nature`s vital nitrogen cycle. It is crucial for the growth of living organisms as well as food and energy source. Traditionally, industrial ammonia production is predominated by Haber- Bosch process (HBP) which is based on direct conversion of N2 and H2 gas under high temperature and high pressure (~500oC, 150-300 bar). However, it is not the favorite route because of its thermodynamic and kinetic limitations, and the need for the energy intense production of hydrogen gas by reforming processes. All these disfavors of HBP open a target to search for an alternative technique to perform efficient ammonia synthesis via electrochemical catalytic processes, in particular via water electrolysis, using water as the hydrogen source to save the process from gas reforming. In this study, the investigation of the interface effects between imidazolium-based ionic liquids and the surface of porous carbon materials with a special interest in the nitrogen absorption capability. As the further step, the possibility to establish this interface as the catalytically active area for the electrochemical N2 reduction to NH3 has been evaluated. This particular combination has been chosen because the porous carbon materials and ionic liquids (IL) have a significant importance in many scientific fields including catalysis and electrocatalysis due to their special structural and physicochemical properties. Primarily, the effects of the confinement of ionic liquid (EmimOAc, 1-Ethyl-3-methylimidazolium acetate) into carbon pores have been investigated. The salt-templated porous carbons, which have different porosity (microporous and mesoporous) and nitrogen species, were used as model structures for the comparison of the IL confinement at different loadings. The nitrogen uptake of EmimOAc can be increased by about 10 times by the confinement in the pores of carbon materials compared to the bulk form. In addition, the most improved nitrogen absorption was observed by IL confinement in micropores and in nitrogen-doped carbon materials as a consequence of the maximized structural changes of IL. Furthermore, the possible use of such interfaces between EmimOAc and porous carbon for the catalytic activation of dinitrogen during the kinetically challenging NRR due to the limited gas absorption in the electrolyte, was examined. An electrocatalytic NRR system based on the conversion of water and nitrogen gas to ammonia at ambient operation conditions (1 bar, 25 °C) was performed in a setup under an applied electric potential with a single chamber electrochemical cell, which consists of the combination of EmimOAc electrolyte with the porous carbon-working electrode and without a traditional electrocatalyst. Under a potential of -3 V vs. SCE for 45 minutes, a NH3 production rate of 498.37 μg h-1 cm-2 and FE of 12.14\% were achieved. The experimental observations show that an electric double-layer, which serves the catalytically active area, occurs between a microporous carbon material and ions of the EmimOAc electrolyte in the presence of sufficiently high provided electric potential. Comparing with the typical NRR systems which have been reported in the literature, the presented electrochemical ammonia synthesis approach provides a significantly higher ammonia production rate with a chance to avoid the possible kinetic limitations of NRR. In terms of operating conditions, ammonia production rate and the faradic efficiency without the need for any synthetic electrocatalyst can be resulted of electrocatalytic activation of nitrogen in the double-layer formed between carbon and IL ions.}, language = {en} }