@article{KholtyginFabrikaRusomarovetal.2011, author = {Kholtygin, A. F. and Fabrika, S. N. and Rusomarov, N. and Hamann, Wolf-Rainer and Kudryavtsev, D. O. and Oskinova, Lida and Chountonov, G. A.}, title = {Line profile variability and magnetic fields of Wolf-Rayet stars: WR 135 and WR 136}, series = {ASTRONOMISCHE NACHRICHTEN}, volume = {332}, journal = {ASTRONOMISCHE NACHRICHTEN}, number = {9-10}, publisher = {WILEY-BLACKWELL}, address = {MALDEN}, issn = {0004-6337}, doi = {10.1002/asna.201111595}, pages = {1008 -- 1011}, year = {2011}, abstract = {We have obtained spectropolarimetric observations of two Wolf-Rayet stars, WR 135 (WC8) and WR 136 (WN6), with the 6-m Russian telescope in July 2009 and July 2010. We have studied the He II 5412 angstrom line region, which contains also the C IV 5469 angstrom line (for WR 135 only). Our goals were to investigate the rapid line-profile variability (LPV) in WR star spectra and to search for magnetic fields. We find small amplitude emission peaks moving from the center of He II line to its wings during the night in spectra of both stars. These emission peaks are likely a signature of accelerating clumps in the stellar wind. We obtained upper limits of the magnetic field strength: approximate to 200G for WR 135 and approximate to 50G for WR 136. (C) 2011 WILEY-VCH Verlag GmbH\&Co. KGaA, Weinheim}, language = {en} } @article{SchoellerHubrigIlyinetal.2011, author = {Schoeller, M. and Hubrig, Swetlana and Ilyin, Ilya and Kharchenko, N. V. and Briquet, Maryline and Gonzalez, J. F. and Langer, Norbert and Oskinova, Lida}, title = {Magnetic field studies of massive main sequence stars}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {332}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {9-10}, publisher = {Wiley-Blackwell}, address = {Malden}, organization = {MAGORI Collaboration}, issn = {0004-6337}, doi = {10.1002/asna.201111606}, pages = {994 -- 997}, year = {2011}, abstract = {We report on the status of our spectropolarimetric observations of massive stars. During the last years, we have discovered magnetic fields in many objects of the upper main sequence, including Be stars, beta Cephei and Slowly Pulsating B stars, and a dozen O stars. Since the effects of those magnetic fields have been found to be substantial by recent models, we are looking into their impact on stellar rotation, pulsation, stellar winds, and chemical abundances. Accurate studies of the age, environment, and kinematic characteristics of the magnetic stars are also promising to give us new insight into the origin of the magnetic fields. Furthermore, longer time series of magnetic field measurements allow us to observe the temporal variability of the magnetic field and to deduce the stellar rotation period and the magnetic field geometry. Studies of the magnetic field in massive stars are indispensable to understand the conditions controlling the presence of those fields and their implications on the stellar physical parameters and evolution.}, language = {en} } @article{SteffenHubrigTodtetal.2014, author = {Steffen, M. and Hubrig, Swetlana and Todt, Helge Tobias and Schoeller, M. and Hamann, Wolf-Rainer and Sandin, Christer and Sch{\"o}nberner, Detlef}, title = {Weak magnetic fields in central stars of planetary nebulae?}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {570}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201423842}, pages = {15}, year = {2014}, abstract = {Context. It is not yet clear whether magnetic fields play an essential role in shaping planetary nebulae (PNe), or whether stellar rotation alone and/or a close binary companion, stellar or substellar, can account for the variety of the observed nebular morphologies. Aims. In a quest for empirical evidence verifying or disproving the role of magnetic fields in shaping planetary nebulae, we follow up on previous attempts to measure the magnetic field in a representative sample of PN central stars. Methods. We obtained low-resolution polarimetric spectra with FORS2 installed on the Antu telescope of the VLT for a sample of 12 bright central stars of PNe with different morphologies, including two round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets are Wolf-Rayet type central stars. Results. For the majority of the observed central stars, we do not find any significant evidence for the existence of surface magnetic fields. However, our measurements may indicate the presence of weak mean longitudinal magnetic fields of the order of 100 Gauss in the central star of the young elliptical planetary nebula IC 418 as well as in the Wolf-Rayet type central star of the bipolar nebula Hen 2-113 and the weak emission line central star of the elliptical nebula Hen 2-131. A clear detection of a 250 G mean longitudinal field is achieved for the A-type companion of the central star of NGC 1514. Some of the central stars show a moderate night-to-night spectrum variability, which may be the signature of a variable stellar wind and/or rotational modulation due to magnetic features. Conclusions. Since our analysis indicates only weak fields, if any, in a few targets of our sample, we conclude that strong magnetic fields of the order of kG are not widespread among PNe central stars. Nevertheless, simple estimates based on a theoretical model of magnetized wind bubbles suggest that even weak magnetic fields below the current detection limit of the order of 100 G may well be sufficient to contribute to the shaping of the surrounding nebulae throughout their evolution. Our current sample is too small to draw conclusions about a correlation between nebular morphology and the presence of stellar magnetic fields.}, language = {en} } @article{MartinezGonzalezPastorYabarLaggetal.2016, author = {Martinez Gonzalez, M. J. and Pastor Yabar, A. and Lagg, A. and Asensio Ramos, A. and Collados Vera, M. and Solanki, S. K. and Balthasar, H. and Berkefeld, T. and Denker, Carsten and Doerr, H. P. and Feller, A. and Franz, M. and Gonz{\´a}lez Manrique, Sergio Javier and Hofmann, A. and Kneer, F. and Kuckein, Christoph and Louis, R. and von der L{\"u}he, O. and Nicklas, H. and Orozco, D. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Verma, Meetu and Waldman, T. and Volkmer, R.}, title = {Inference of magnetic fields in the very quiet Sun}, series = {Journal of geophysical research : Earth surface}, volume = {596}, journal = {Journal of geophysical research : Earth surface}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628449}, pages = {11}, year = {2016}, abstract = {Context. Over the past 20 yr, the quietest areas of the solar surface have revealed a weak but extremely dynamic magnetism occurring at small scales (<500 km), which may provide an important contribution to the dynamics and energetics of the outer layers of the atmosphere. Understanding this magnetism requires the inference of physical quantities from high-sensitivity spectro-polarimetric data with high spatio-temporal resolution. Aims. We present high-precision spectro-polarimetric data with high spatial resolution (0.4") of the very quiet Sun at 1.56 mu m obtained with the GREGOR telescope to shed some light on this complex magnetism. Methods. We used inversion techniques in two main approaches. First, we assumed that the observed profiles can be reproduced with a constant magnetic field atmosphere embedded in a field-free medium. Second, we assumed that the resolution element has a substructure with either two constant magnetic atmospheres or a single magnetic atmosphere with gradients of the physical quantities along the optical depth, both coexisting with a global stray-light component. Results. Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak (similar to 150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30\%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area similar to 50\% are two-lobed Stokes V profiles, meaning that 23\% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50\% based on the regular profiles. Therefore, 12\% of the field of view harbour hG fields with filling factors typically below 30\%. At our present spatial resolution, 70\% of the pixels apparently are non-magnetised.}, language = {en} } @article{BalthasarGoemoeryGonzalezManriqueetal.2016, author = {Balthasar, H. and G{\"o}m{\"o}ry, P. and Gonz{\´a}lez Manrique, Sergio Javier and Kuckein, Christoph and Kavka, J. and Kucera, A. and Schwartz, P. and Vaskova, R. and Berkefeld, T. and Collados Vera, M. and Denker, Carsten and Feller, A. and Hofmann, A. and Lagg, A. and Nicklas, H. and Suarez, D. and Pastor Yabar, A. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612432}, pages = {1050 -- 1056}, year = {2016}, abstract = {Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines SiI lambda 1082.7 nm, He I lambda 1083.0 nm, and Ca I lambda 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s(-1) in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the field lines of rising flux tubes, in agreement with earlier results. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} } @article{VermaDenkerBoehmetal.2016, author = {Verma, Meetu and Denker, Carsten and B{\"o}hm, F. and Balthasar, H. and Fischer, C. E. and Kuckein, Christoph and Gonzalez, N. Bello and Berkefeld, T. and Collados Vera, M. and Diercke, Andrea and Feller, A. and Gonzalez Manrique, Sergio Javier and Hofmann, A. and Lagg, A. and Nicklas, H. and Orozco Suarez, D. and Pator Yabar, A. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612447}, pages = {1090 -- 1098}, year = {2016}, abstract = {Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si i.1082.7 nm line, the chromospheric He I lambda 1083.0 nm triplet, and the photospheric Ca I lambda 1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the " Stokes Inversions based on Response functions" (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots. (C) 2016 WILEY-VCH Verlag GmbH\& Co.KGaA, Weinheim}, language = {en} } @article{HubrigScholzHamannetal.2016, author = {Hubrig, Swetlana and Scholz, Kathleen and Hamann, Wolf-Rainer and Schoeller, M. and Ignace, R. and Ilyin, Ilya and Gayley, K. G. and Oskinova, Lida}, title = {Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry}, series = {Monthly notices of the Royal Astronomical Society}, volume = {458}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw558}, pages = {3381 -- 3393}, year = {2016}, abstract = {To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.}, language = {en} } @article{JaervinenHubrigIlyinetal.2017, author = {Jaervinen, S. P. and Hubrig, Swetlana and Ilyin, Ilya and Shenar, Tomer and Schoeller, M.}, title = {A search for spectral variability in the highly magnetized O9.7 V star HD 54879}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {338}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201713402}, pages = {952 -- 958}, year = {2017}, abstract = {The O9.7 V star HD 54879 possesses the second strongest magnetic field among the single, magnetic, O-type stars. In contrast to other magnetic O-type stars, the chemical abundance analysis of HD 54879 indicated a rather normal optical spectrum without obvious element enhancements or depletions. Furthermore, spectral variability was detected only in lines partly formed in the magnetosphere. As this star shows such a deviate, almost nonvariable, spectral behavior, we performed a deeper analysis of its spectral variability on different timescales using all currently available HARPSpol and FORS 2 spectropolarimetric observations. The longitudinal magnetic field strengths measured at different epochs indicate the presence of variability possibly related to stellar rotation, but the current data do not allow us yet to identify the periodicity of the field variation. As spectropolarimetric observations obtained at different epochs consist of subexposures with different integration times, we investigated spectral variability on timescales of minutes. The detected level of variability in line profiles of different elements is rather low, between 0.2 and 1.7\%, depending on the integration time of the exposures and the considered element.}, language = {en} } @article{GoemoeryBalthasarKuckeinetal.2017, author = {G{\"o}m{\"o}ry, Peter and Balthasar, Horst and Kuckein, Christoph and Koza, Julis and Veronig, Astrid M. and Gonz{\´a}lez Manrique, Sergio Javier and Kucera, Ales and Schwartz, Pavol and Hanslmeier, Arnold}, title = {Flare-induced changes of the photospheric magnetic field in a delta-spot deduced from ground-based observations}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {602}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730644}, pages = {14 -- 27}, year = {2017}, abstract = {Aims. Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a delta-spot belonging to active region NOAA 11865. Methods. High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe I 10783 angstrom and Si I 10786 angstrom, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results. The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550G was found that bridges the PIL and connects umbrae of opposite polarities in the delta-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 angstrom filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions. The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations.}, language = {en} }