@phdthesis{Niehoff2001, author = {Niehoff, Daniel}, title = {Modellierung des Einflusses der Landnutzung auf die Hochwasserentstehung in der Mesoskala}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000148}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Seit 1990 waren mehrere der großen Flussgebiete Mitteleuropas wiederholt von extremen Hochwassern betroffen. Da sowohl die Landoberfl{\"a}che als auch die Flusssysteme weiter Teile Mitteleuropas in der Vergangenheit weitreichenden Eingriffen ausgesetzt gewesen sind, wird bei der Suche nach den Ursachen f{\"u}r diese H{\"a}ufung von Extremereignissen auch die Frage nach der Verantwortung des Menschen hierf{\"u}r diskutiert. Gew{\"a}sserausbau, Fl{\"a}chenversiegelung, intensive landwirtschaftliche Bodenbearbeitung, Flurbereinigung und Waldsch{\"a}den sind nur einige Beispiele und Folgen der anthropogenen Eingriffe in die Landschaft. Aufgrund der Vielfalt der beteiligten Prozesse und deren Wechselwirkungen gibt es allerdings bislang nur Sch{\"a}tzungen dar{\"u}ber, wie sehr sich die Hochwassersituation hierdurch ver{\"a}ndert hat. Vorrangiges Ziel dieser Arbeit ist es, mit Hilfe eines hydrologischen Modells systematisch darzustellen, in welcher Weise, in welcher Gr{\"o}ßenordnung und unter welchen Umst{\"a}nden die Art der Landnutzung auf die Hochwasserentstehung Einfluss nimmt. Dies wird anhand exemplarischer Modellanwendungen in der hydrologischen Mesoskala untersucht. Zu diesem Zweck wurde das deterministische und fl{\"a}chendifferenzierte hydrologische Modell wasim-eth ausgew{\"a}hlt, das sich durch eine ausgewogene Mischung aus physikalisch begr{\"u}ndeten und konzeptionellen Ans{\"a}tzen auszeichnet. Das Modell wurde im Rahmen dieser Arbeit um verschiedene Aspekte erweitert, die f{\"u}r die Charakterisierung des Einflusses der Landnutzung auf die Hochwasserentstehung wichtig sind: (1) Bevorzugtes Fließen in Makroporen wird durch eine Zweiteilung des Bodens in Makroporen und Bodenmatrix dargestellt, die schnelle Infiltration und Perkolation jenseits der hydraulischen Leitf{\"a}higkeit der Bodenmatrix erm{\"o}glicht. (2) Verschl{\"a}mmung {\"a}ußert sich im Modell abh{\"a}ngig von Niederschlagsintensit{\"a}t und Vegetationsbedeckungsgrad als Verschlechterung der Infiltrationsbedingungen an der Bodenoberfl{\"a}che. (3) Das heterogene Erscheinungsbild bebauter Fl{\"a}chen mit einer Mischung aus versiegelten Bereichen und Freifl{\"a}chen wird ber{\"u}cksichtigt, indem jede Teilfl{\"a}che je nach Versiegelungsgrad in einen unversiegelten Bereich und einen versiegelten Bereich mit Anschluss an die Kanalisation aufgeteilt wird. (4) Dezentraler R{\"u}ckhalt von Niederschlagswasser kann sowohl f{\"u}r nat{\"u}rliche Mulden als auch f{\"u}r gezielt angelegte Versickerungsmulden mit definierten Infiltrationsbedingungen simuliert werden. Das erweiterte Modell wird exemplarisch auf drei mesoskalige Teileinzugsgebiete des Rheins angewandt. Diese drei Gebiete mit einer Fl{\"a}che von zwischen 100 und 500 km² wurden im Hinblick darauf ausgew{\"a}hlt, dass jeweils eine der drei Hauptlandnutzungskategorien Bebauung, landwirtschaftliche Nutzung oder Wald dominiert. F{\"u}r die drei Untersuchungsgebiete sind r{\"a}umlich explizite Landnutzungs- und Landbedeckungsszenarien entworfen worden, deren Einfluss auf die Hochwasserentstehung mit Hilfe des erweiterten hydrologischen Modells simuliert wird. Im Einzelnen werden die Auswirkungen von Verst{\"a}dterung, Maßnahmen zur Niederschlagsversickerung in Siedlungsgebieten, Stilllegung agrarisch genutzter Fl{\"a}chen, ver{\"a}nderter landwirtschaftlicher Bodenbearbeitung, Aufforstung sowie von Sturmsch{\"a}den in W{\"a}ldern untersucht. Diese Eingriffe beeinflussen die Interzeption von Niederschlag, dessen Infiltration, die oberfl{\"a}chennahen unterirdischen Fließprozesse sowie, zum Beispiel im Fall der Kanalisation, auch die Abflusskonzentration. Die hydrologischen Simulationen demonstrieren, dass die Versiegelung einer Fl{\"a}che den massivsten Eingriff in die nat{\"u}rlichen Verh{\"a}ltnisse darstellt und deshalb die st{\"a}rksten (negativen) Ver{\"a}nderungen der Hochwassersituation hervorbringt. Außerdem wird deutlich, dass eine bloße {\"A}nderung des Interzeptionsverm{\"o}gens zu keinen wesentlichen Ver{\"a}nderungen f{\"u}hrt, da die Speicherkapazit{\"a}t der Pflanzenoberfl{\"a}chen im Verh{\"a}ltnis zum Volumen hochwasserausl{\"o}sender Niederschl{\"a}ge eher klein ist. St{\"a}rkere Ver{\"a}nderungen ergeben sich hingegen aus einer {\"A}nderung der Infiltrationsbedingungen. Die Grenzen der entwickelten Methodik zeigen sich am deutlichsten bei der Simulation ver{\"a}nderter landwirtschaftlicher Bewirtschaftungsmethoden, deren mathematische Beschreibung und zahlenm{\"a}ßige Charakterisierung aufgrund der Komplexit{\"a}t der beteiligten Prozesse mit großen Unsicherheiten behaftet ist. Die Modellierungsergebnisse belegen dar{\"u}ber hinaus, dass pauschale Aussagen zum Einfluss der Landnutzung auf die Hochwasserentstehung aufgrund der entscheidenden Bedeutung der klimatischen und physiographischen Randbedingungen unzul{\"a}ssig sind. Zu den klimatischen Randbedingungen z{\"a}hlen sowohl Niederschlagsintensit{\"a}t und -dauer als auch die Feuchtebedingungen vor einem hochwasserausl{\"o}senden Niederschlag. Die physiographischen Randbedingungen sind von der geomorphologischen und geologischen Ausstattung des Gebiets vorgegeben. Weiterhin muss der r{\"a}umliche und zeitliche Maßstab, {\"u}ber den Aussagen getroffen werden, klar definiert sein, da sich mit steigender Einzugsgebietsgr{\"o}ße die relative Bedeutung sowohl der verschiedenen Niederschlagstypen als auch der physiographischen Eigenschaften verschiebt. Dies wird in der vorliegenden Arbeit im Gegensatz zu vielen anderen Untersuchungen konsequent ber{\"u}cksichtigt. In Abh{\"a}ngigkeit von Randbedingungen und r{\"a}umlichen Maßstab sind aufgrund der gewonnen Erkenntnisse folgende Aussagen zum Einfluss von Landnutzungs{\"a}nderungen auf die Hochwasserentstehung m{\"o}glich: (1) F{\"u}r intensive konvektive Niederschlagsereignisse mit tendenziell geringer Vorfeuchte ist der Einfluss der Landnutzung gr{\"o}ßer als f{\"u}r langanhaltende advektive Niederschl{\"a}ge geringer Intensit{\"a}t, da im ersten Fall ver{\"a}nderte Infiltrationsbedingungen st{\"a}rker zum Tragen kommen als bei kleinen Niederschlagsintensit{\"a}ten. (2) In kleinen Einzugsgebieten, wo kleinr{\"a}umige Konvektivzellen zu Hochwassern f{\"u}hren k{\"o}nnen, ist der Einfluss der Landnutzung dementsprechend gr{\"o}ßer als in großen Flussgebieten wie dem Rheingebiet, wo vor allem langanhaltende advektive Ereignisse (unter Umst{\"a}nden verbunden mit Schneeschmelze) relevant sind. (3) In Gebieten mit guten Speichereigenschaften wie m{\"a}chtigen, gut durchl{\"a}ssigen B{\"o}den und gut durchl{\"a}ssigem Gesteinsuntergrund ist der Einfluss der Landnutzung gr{\"o}ßer als in Gebieten mit geringm{\"a}chtigen B{\"o}den und geringdurchl{\"a}ssigem Festgestein. Dies ist darin begr{\"u}ndet, dass in Gebieten mit guten Speichereigenschaften bei einer Verschlechterung der Infiltrationsbedingungen mehr Speicherraum f{\"u}r Niederschlag verloren geht als in anderen Gebieten.}, language = {de} } @phdthesis{Hattermann2005, author = {Hattermann, Fred Fokko}, title = {Integrated modelling of Global Change impacts in the German Elbe River Basin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6052}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The scope of this study is to investigate the environmental change in the German part of the Elbe river basin, whereby the focus is on two water related problems: having too little water and having water of poor quality. The Elbe region is representative of humid to semi-humid landscapes in central Europe, where water availability during the summer season is the limiting factor for plant growth and crop yields, especially in the loess areas, where the annual precipitation is lower than 500 mm. It is most likely that water quantity problems will accelerate in future, because both the observed and the projected climate trend show an increase in temperature and a decrease in annual precipitation, especially in the summer. Another problem is nutrient pollution of rivers and lakes. In the early 1990s, the Elbe was one of the most heavily polluted rivers in Europe. Even though nutrient emissions from point sources have notably decreased in the basin due to reduction of industrial sources and introduction of new and improved sewage treatment facilities, the diffuse sources of pollution are still not sufficiently controlled. The investigations have been done using the eco-hydrological model SWIM (Soil and Water Integrated Model), which has been embedded in a model framework of climate and agro-economic models. A global scenario of climate and agro-economic change has been regionalized to generate transient climate forcing data and land use boundary conditions for the model. The model was used to transform the climate and land use changes into altered evapotranspiration, groundwater recharge, crop yields and river discharge, and to investigate the development of water quality in the river basin. Particular emphasis was given to assessing the significance of the impacts on the hydrology, taking into account in the analysis the inherent uncertainty of the regional climate change as well as the uncertainty in the results of the model. The average trend of the regional climate change scenario indicates a decrease in mean annual precipitation up to 2055 of about 1.5 \%, but with high uncertainty (covering the range from -15.3 \% to +14.8 \%), and a less uncertain increase in temperature of approximately 1.4 K. The relatively small change in precipitation in conjunction with the change in temperature leads to severe impacts on groundwater recharge and river flow. Increasing temperature induces longer vegetation periods, and the seasonality of the flow regime changes towards longer low flow spells in summer. As a results the water availability will decrease on average of the scenario simulations by approximately 15 \%. The increase in temperatures will improve the growth conditions for temperature limited crops like maize. The uncertainty of the climate trend is particularly high in regions where the change is the highest. The simulation results for the Nuthe subbasin of the Elbe indicate that retention processes in groundwater, wetlands and riparian zones have a high potential to reduce the nitrate concentrations of rivers and lakes in the basin, because they are located at the interface between catchment area and surface water bodies, where they are controlling the diffuse nutrient inputs. The relatively high retention of nitrate in the Nuthe basin is due to the long residence time of water in the subsurface (about 40 years), with good conditions for denitrification, and due to nitrate retention and plant uptake in wetlands and riparian zones. The concluding result of the study is that the natural environment and communities in parts of Central Europe will have considerably lower water resources under scenario conditions. The water quality will improve, but due to the long residence time of water and nutrients in the subsurface, this improvement will be slower in areas where the conditions for nutrient turn-over in the subsurface are poor.}, subject = {Hydrologie}, language = {en} } @phdthesis{Post2006, author = {Post, Joachim}, title = {Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11507}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource. Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study: ▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future. ▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model's capability to simulate these processes compared to observations. ▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models. ▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics. For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 \% of croplands area as "surplus" land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 \% should remain on the fields in order to maintain soil quality and fertility. The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions. The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status.}, subject = {Kohlenstoff}, language = {en} } @phdthesis{Hesse2018, author = {Hesse, Cornelia}, title = {Integrated water quality modelling in meso- to large-scale catchments of the Elbe river basin under climate and land use change}, doi = {10.25932/publishup-42295}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422957}, school = {Universit{\"a}t Potsdam}, pages = {ix, 217}, year = {2018}, abstract = {In einer sich {\"a}ndernden Umwelt sind Fließgew{\"a}sser{\"o}kosysteme vielf{\"a}ltigen direkten und indirekten anthropogenen Belastungen ausgesetzt, die die Gew{\"a}sser sowohl in ihrer Menge als auch in ihrer G{\"u}te beeintr{\"a}chtigen k{\"o}nnen. Ein {\"u}berm{\"a}ßiger Eintrag von N{\"a}hrstoffen verursacht etwa Massenentwicklungen von Algen und Sauerstoffdefizite in den Gew{\"a}ssern, was zum Verfehlen der Ziele der Wasserrahmenrichtlinie (WRRL) f{\"u}hren kann. In vielen europ{\"a}ischen Einzugsgebieten und auch dem der Elbe sind solche Probleme zu beobachten. W{\"a}hrend der letzten Jahrzehnte entstanden diverse computergest{\"u}tzte Modelle, die zum Schutz und Management von Wasserressourcen genutzt werden k{\"o}nnen. Sie helfen beim Verstehen der N{\"a}hrstoffprozesse und Belastungspfade in Einzugsgebieten, bei der Absch{\"a}tzung m{\"o}glicher Folgen von Klima- und Landnutzungs{\"a}nderungen f{\"u}r die Wasserk{\"o}rper, sowie bei der Entwicklung eventueller Kompensationsmaßnahmen. Aufgrund der Vielzahl an sich gegenseitig beeinflussenden Prozessen ist die Modellierung der Wasserqualit{\"a}t komplexer und aufw{\"a}ndiger als eine reine hydrologische Modellierung. {\"O}kohydrologische Modelle zur Simulation der Gew{\"a}sserg{\"u}te, einschließlich des Modells SWIM (Soil and Water Integrated Model), bed{\"u}rfen auch h{\"a}ufig noch einer Weiterentwicklung und Verbesserung der Prozessbeschreibungen. Aus diesen {\"U}berlegungen entstand die vorliegende Dissertation, die sich zwei Hauptanliegen widmet: 1) einer Weiterentwicklung des N{\"a}hrstoffmoduls des {\"o}kohydrologischen Modells SWIM f{\"u}r Stickstoff- und Phosphorprozesse, und 2) der Anwendung des Modells SWIM im Elbegebiet zur Unterst{\"u}tzung eines anpassungsf{\"a}higen Wassermanagements im Hinblick auf m{\"o}gliche zuk{\"u}nftige {\"A}nderungen der Umweltbedingungen. Die kumulative Dissertation basiert auf f{\"u}nf wissenschaftlichen Artikeln, die in internationalen Zeitschriften ver{\"o}ffentlicht wurden. Im Zuge der Arbeit wurden verschiedene Modellanpassungen in SWIM vorgenommen, wie etwa ein einfacher Ansatz zur Verbesserung der Simulation der Wasser- und N{\"a}hrstoffverh{\"a}ltnisse in Feuchtgebieten, ein um Ammonium erweiterter Stickstoffkreislauf im Boden, sowie ein Flussprozessmodul, das Umwandlungsprozesse, Sauerstoffverh{\"a}ltnisse und Algenwachstum im Fließgew{\"a}sser simuliert, haupts{\"a}chlich angetrieben von Temperatur und Licht. Auch wenn dieser neue Modellansatz ein sehr komplexes Modell mit einer Vielzahl an neuen Kalibrierungsparametern und steigender Unsicherheit erzeugte, konnten gute Ergebnisse in den Teileinzugsgebieten und dem gesamten Gebiet der Elbe erzielt werden, so dass das Modell zur Absch{\"a}tzung m{\"o}glicher Folgen von Klimavariabilit{\"a}ten und ver{\"a}nderten anthropogenen Einfl{\"u}ssen f{\"u}r die Gew{\"a}sserg{\"u}te genutzt werden konnte. Das neue Fließgew{\"a}ssermodul ist ein wichtiger Beitrag zur Verbesserung der N{\"a}hrstoffmodellierung in SWIM, vor allem f{\"u}r Stoffe, die haupts{\"a}chlich aus Punktquellen in die Gew{\"a}sser gelangen (wie z.B. Phosphat). Der neue Modellansatz verbessert zudem die Anwendbarkeit von SWIM f{\"u}r Fragestellungen im Zusammenhang mit der WRRL, bei der biologische Qualit{\"a}tskomponenten (wie etwa Phytoplankton) eine zentrale Rolle spielen. Die dargestellten Ergebnisse der Wirkungsstudien k{\"o}nnen bei Entscheidungstr{\"a}gern und anderen Akteuren das Verst{\"a}ndnis f{\"u}r zuk{\"u}nftige Herausforderungen im Gew{\"a}ssermanagement erh{\"o}hen und dazu beitragen, ein angepasstes Management f{\"u}r das Elbeeinzugsgebiet zu entwickeln.}, language = {en} }