@article{KaramzadehToularoudHeimannDahmetal.2020, author = {Karamzadeh Toularoud, Nasim and Heimann, Sebastian and Dahm, Torsten and Kr{\"u}ger, Frank}, title = {Earthquake source arrays}, series = {Geophysical journal international}, volume = {221}, journal = {Geophysical journal international}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggaa002}, pages = {352 -- 370}, year = {2020}, abstract = {A collection of earthquake sources recorded at a single station, under specific conditions, are considered as a source array (SA), that is interpreted as if earthquake sources originate at the station location and are recorded at the source location. Then, array processing methods, that is array beamforming, are applicable to analyse the recorded signals. A possible application is to use source array multiple event techniques to locate and characterize near-source scatterers and structural interfaces. In this work the aim is to facilitate the use of earthquake source arrays by presenting an automatic search algorithm to configure the source array elements. We developed a procedure to search for an optimal source array element distribution given an earthquake catalogue including accurate origin time and hypocentre locations. The objective function of the optimization process can be flexibly defined for each application to ensure the prerequisites (criteria) of making a source array. We formulated four quantitative criteria as subfunctions and used the weighted sum technique to combine them in one single scalar function. The criteria are: (1) to control the accuracy of the slowness vector estimation using the time domain beamforming method, (2) to measure the waveform coherency of the array elements, (3) to select events with lower location error and (4) to select traces with high energy of specific phases, that is, sp- or ps-phases. The proposed procedure is verified using synthetic data as well as real examples for the Vogtland region in Northwest Bohemia. We discussed the possible application of the optimized source arrays to identify the location of scatterers in the velocity model by presenting a synthetic test and an example using real waveforms.}, language = {en} } @phdthesis{KaramzadehToularoud2020, author = {Karamzadeh Toularoud, Nasim}, title = {Earthquake source and receiver array optimal configuration}, doi = {10.25932/publishup-45982}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459828}, school = {Universit{\"a}t Potsdam}, pages = {viii, 94}, year = {2020}, abstract = {Seismic receiver arrays have variety of applications in seismology, particularly when the signal enhancement is a prerequisite to detect seismic events, and in situations where installing and maintaining sparse networks are impractical. This thesis has mainly focused on the development of a new approach for seismological source and receiver array design.The proposed approach deals with the array design task as an optimization problem. The criteria and prerequisite constraints in array design task are integrated in objective function definition and evaluation of a optimization process. Three cases are covered in this thesis: (1) a 2-D receiver array geometry optimization, (2) a 3-D source array optimization, and (3) an array application to monitor microseismic data, where the effect of different types of noise are evaluated. A flexible receiver array design framework implements a customizable scenario modelling and optimization scheme by making use of synthetic seismograms. Using synthetic seismograms to evaluate array performance makes it possible to consider additional constraints, e.g. land ownership, site-specific noise levels or characteristics of the seismic sources under investigation. The use of synthetic array beamforming as an array design criteria is suggested. The framework is customized by designing a 2-D small scale receiver array to monitor earthquake swarm activity in northwest Bohemia/ Vogtland in central Europe. Two sub-functions are defined to verify the accuracy of horizontal slowness estimation; one to suppress aliasing effects due to possible secondary lobes of synthetic array beamforming calculated in horizontal slowness space, and the other to reduce the event's mislocation caused by miscalculation of the horizontal slowness vector. Subsequently, a weighting technique is applied to combine the sub-functions into one single scalar objective function to use in the optimization process. The idea of optimal array is employed to design a 3-D source array, given a well-located catalog of events. The conditions to make source arrays are formulated in four objective functions and a weighted sum technique is used to combine them in one single scalar function. The criteria are: (1) accurate slowness vector estimation, (2) high waveform coherency, (3) low location error and (4) high energy of coda phases. The method is evaluated by two experiments, (1) a synthetic test using realistic synthetic seismograms, (2) using real seismograms, and for each case optimized SA elements are configured using the data from the Vogtland area. The location of a possible scatterer in the velocity model, that makes the converted/reflected phases, e.g. sp-phases, is retrieved by a grid search method using the optimized SA. The accuracy of the approach and the obtained results demonstrated that the method is applicable to study the crustal structure and the location of crustal scatterers when the strong converted phases are observed in the data and a well-located catalog is available. Small aperture arrays are employed in seismology for a variety of applications, ranging from pure event detection to monitor and study of microcosmic activities. The monitoring of microseismicity during temporary human activities is often difficult, as the signal-to-noise ratio is very low and noise is strongly increased during the operation. The combination of small aperture seismic arrays with shallow borehole sensors offers a solution. We tested this monitoring approach at two different sites, (1) accompanying a fracking experiment in sedimentary shale at 4~km depth, and (2) above a gas field under depletion. Arrays recordings are compared with recordings available from shallow borehole sensors and examples of detection and location performance of the array are given. The effect of different types of noise at array and borehole stations are compared and discussed.}, language = {en} }