@phdthesis{Nienhaus2005, author = {Nienhaus, Marc}, title = {Real-Time-Non-Photorealistic rendering techniques for illustrating 3D scenes and their dynamics}, address = {Potsdam}, pages = {x, 102 S. : graph. Darst.}, year = {2005}, language = {en} } @book{KirschNienhausDoellner2005, author = {Kirsch, Florian and Nienhaus, Marc and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Visualizing design and spatial assembly of interactive CSG}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Softwaresystemtechnik an der Universit{\"a}t Potsda}, volume = {7}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Softwaresystemtechnik an der Universit{\"a}t Potsda}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {3-937786-56-2}, issn = {1613-5652}, pages = {8 S.}, year = {2005}, language = {en} } @article{NienhausDoellner2005, author = {Nienhaus, Marc and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Depicting dynamics using principles of visual art and narration's}, issn = {0272-1716}, year = {2005}, language = {en} } @book{DoellnerKirschNienhaus2005, author = {D{\"o}llner, J{\"u}rgen Roland Friedrich and Kirsch, Florian and Nienhaus, Marc}, title = {Visualizing Design and Spatial Assembly of Interactive CSG}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-937786-56-2}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33771}, publisher = {Universit{\"a}t Potsdam}, pages = {8}, year = {2005}, abstract = {For interactive construction of CSG models understanding the layout of a model is essential for its efficient manipulation. To understand position and orientation of aggregated components of a CSG model, we need to realize its visible and occluded parts as a whole. Hence, transparency and enhanced outlines are key techniques to assist comprehension. We present a novel real-time rendering technique for visualizing design and spatial assembly of CSG models. As enabling technology we combine an image-space CSG rendering algorithm with blueprint rendering. Blueprint rendering applies depth peeling for extracting layers of ordered depth from polygonal models and then composes them in sorted order facilitating a clear insight of the models. We develop a solution for implementing depth peeling for CSG models considering their depth complexity. Capturing surface colors of each layer and later combining the results allows for generating order-independent transparency as one major rendering technique for CSG models. We further define visually important edges for CSG models and integrate an image-space edgeenhancement technique for detecting them in each layer. In this way, we extract visually important edges that are directly and not directly visible to outline a model's layout. Combining edges with transparency rendering, finally, generates edge-enhanced depictions of image-based CSG models and allows us to realize their complex, spatial assembly.}, language = {en} } @book{NienhausGoochDoellner2006, author = {Nienhaus, Marc and Gooch, Bruce and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Visualizing movement dynamics in virtual urban environments}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-939469-52-0}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33065}, publisher = {Universit{\"a}t Potsdam}, pages = {7}, year = {2006}, abstract = {Dynamics in urban environments encompasses complex processes and phenomena such as related to movement (e.g.,traffic, people) and development (e.g., construction, settlement). This paper presents novel methods for creating human-centric illustrative maps for visualizing the movement dynamics in virtual 3D environments. The methods allow a viewer to gain rapid insight into traffic density and flow. The illustrative maps represent vehicle behavior as light threads. Light threads are a familiar visual metaphor caused by moving light sources producing streaks in a long-exposure photograph. A vehicle's front and rear lights produce light threads that convey its direction of motion as well as its velocity and acceleration. The accumulation of light threads allows a viewer to quickly perceive traffic flow and density. The light-thread technique is a key element to effective visualization systems for analytic reasoning, exploration, and monitoring of geospatial processes.}, language = {en} }