@phdthesis{Bischoff2013, author = {Bischoff, Juliane}, title = {Microbial communities and their response to Pleistocene and Holocene climate variabilities in the Russian Arctic}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68895}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The Arctic is considered as a focal region in the ongoing climate change debate. The currently observed and predicted climate warming is particularly pronounced in the high northern latitudes. Rising temperatures in the Arctic cause progressive deepening and duration of permafrost thawing during the arctic summer, creating an 'active layer' with high bioavailability of nutrients and labile carbon for microbial consumption. The microbial mineralization of permafrost carbon creates large amounts of greenhouse gases, including carbon dioxide and methane, which can be released to the atmosphere, creating a positive feedback to global warming. However, to date, the microbial communities that drive the overall carbon cycle and specifically methane production in the Arctic are poorly constrained. To assess how these microbial communities will respond to the predicted climate changes, such as an increase in atmospheric and soil temperatures causing increased bioavailability of organic carbon, it is necessary to investigate the current status of this environment, but also how these microbial communities reacted to climate changes in the past. This PhD thesis investigated three records from two different study sites in the Russian Arctic, including permafrost, lake shore and lake deposits from Siberia and Chukotka. A combined stratigraphic approach of microbial and molecular organic geochemical techniques were used to identify and quantify characteristic microbial gene and lipid biomarkers. Based on this data it was possible to characterize and identify the climate response of microbial communities involved in past carbon cycling during the Middle Pleistocene and the Late Pleistocene to Holocene. It is shown that previous warmer periods were associated with an expansion of bacterial and archaeal communities throughout the Russian Arctic, similar to present day conditions. Different from this situation, past glacial and stadial periods experienced a substantial decrease in the abundance of Bacteria and Archaea. This trend can also be confirmed for the community of methanogenic archaea that were highly abundant and diverse during warm and particularly wet conditions. For the terrestrial permafrost, a direct effect of the temperature on the microbial communities is likely. In contrast, it is suggested that the temperature rise in scope of the glacial-interglacial climate variations led to an increase of the primary production in the Arctic lake setting, as can be seen in the corresponding biogenic silica distribution. The availability of this algae-derived carbon is suggested to be a driver for the observed pattern in the microbial abundance. This work demonstrates the effect of climate changes on the community composition of methanogenic archae. Methanosarcina-related species were abundant throughout the Russian Arctic and were able to adapt to changing environmental conditions. In contrast, members of Methanocellales and Methanomicrobiales were not able to adapt to past climate changes. This PhD thesis provides first evidence that past climatic warming led to an increased abundance of microbial communities in the Arctic, closely linked to the cycling of carbon and methane production. With the predicted climate warming, it may, therefore, be anticipated that extensive amounts of microbial communities will develop. Increasing temperatures in the Arctic will affect the temperature sensitive parts of the current microbiological communities, possibly leading to a suppression of cold adapted species and the prevalence of methanogenic archaea that tolerate or adapt to increasing temperatures. These changes in the composition of methanogenic archaea will likely increase the methane production potential of high latitude terrestrial regions, changing the Arctic from a carbon sink to a source.}, language = {en} } @phdthesis{Jaiser2013, author = {Jaiser, Ralf}, title = {Dreidimensionale Diagnostik der großskaligen Zirkulation der Tropo- und Stratosph{\"a}re}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69064}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In dieser Arbeit werden Konzepte f{\"u}r die Diagnostik der großskaligen Zirkulation in der Troposph{\"a}re und Stratosph{\"a}re entwickelt. Der Fokus liegt dabei auf dem Energiehaushalt, auf der Wellenausbreitung und auf der Interaktion der atmosph{\"a}rischen Wellen mit dem Grundstrom. Die Konzepte werden hergeleitet, wobei eine neue Form des lokalen Eliassen-Palm-Flusses unter Einbeziehung der Feuchte eingef{\"u}hrt wird. Angewendet wird die Diagnostik dann auf den Reanalysedatensatz ERA-Interim und einen durch beobachtete Meerestemperatur- und Eisdaten angetriebenen Lauf des ECHAM6 Atmosph{\"a}renmodells. Die diagnostischen Werkzeuge zur Analyse der großskaligen Zirkulation sind einerseits n{\"u}tzlich, um das Verst{\"a}ndnis der Dynamik des Klimasystems weiter zu f{\"o}rdern. Andererseits kann das gewonnene Verst{\"a}ndnis des Zusammenhangs von Energiequellen und -senken sowie deren Verkn{\"u}pfung mit synoptischen und planetaren Wellensystemen und dem resultierenden Antrieb des Grundstroms auch verwendet werden, um Klimamodelle auf die korrekte Wiedergabe dieser Beobachtungen zu pr{\"u}fen. Hier zeigt sich, dass die Abweichungen im untersuchten ECHAM6-Modelllauf bez{\"u}glich des Energiehaushalts klein sind, jedoch teils starke Abweichungen bez{\"u}glich der Ausbreitung von atmosph{\"a}rischen Wellen existieren. Planetare Wellen zeigen allgemein zu große Intensit{\"a}ten in den Eliassen-Palm-Fl{\"u}ssen, w{\"a}hrend innerhalb der Strahlstr{\"o}me der oberen Troposph{\"a}re der Antrieb des Grundstroms durch synoptische Wellen verf{\"a}lscht ist, da deren vertikale Ausbreitung gegen{\"u}ber den Beobachtungen verschoben ist. Untersucht wird auch der Einfluss von arktischen Meereis{\"a}nderungen ausgehend vom Bedeckungsminimum im August/September bis in den Winter. Es werden starke positive Temperaturanomalien festgestellt, welche an der Oberfl{\"a}che am gr{\"o}ßten sind. Diese f{\"u}hren vor allem im Herbst zur Intensivierung von synoptischen Systemen in den arktischen Breiten, da die Stabilit{\"a}t der troposph{\"a}rischen Schichtung verringert ist. Im darauffolgenden Winter stellen sich barotrope bis in die Stratosph{\"a}re reichende {\"A}nderungen der großskaligen Zirkulation ein, welche auf Meereis{\"a}nderungen zur{\"u}ckzuf{\"u}hren sind. Der meridionale Druckgradient sinkt und f{\"u}hrt so zu einem Muster {\"a}hnlich einer negativen Phase der arktischen Oszillation in der Troposph{\"a}re und einem geschw{\"a}chten Polarwirbel in der Stratosph{\"a}re. Diese Zusammenh{\"a}nge werden ebenfalls in einem ECHAM6-Modelllauf untersucht, wobei vor allem der Erw{\"a}rmungstrend in der Arktis zu gering ist. Die großskaligen Ver{\"a}nderungen im Winter k{\"o}nnen zum Teil auch im Modelllauf festgestellt werden, jedoch zeigen sich insbesondere in der Stratosph{\"a}re Abweichungen f{\"u}r die Periode mit der geringsten Eisausdehnung. Die vertikale Ausbreitung planetarer Wellen von der Troposph{\"a}re in die Stratosph{\"a}re ist in ECHAM6 mit sehr großen Abweichungen wiedergegeben. Somit stellt die Wellenausbreitung insgesamt den gr{\"o}ßten in dieser Arbeit festgestellten Mangel in ECHAM6 dar.}, language = {de} } @phdthesis{Holsten2013, author = {Holsten, Anne}, title = {Climate change vulnerability assessments in the regional context}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66836}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Adapting sectors to new conditions under climate change requires an understanding of regional vulnerabilities. Conceptually, vulnerability is defined as a function of sensitivity and exposure, which determine climate impacts, and adaptive capacity of a system. Vulnerability assessments for quantifying these components have become a key tool within the climate change field. However, there is a disagreement on how to make the concept operational in studies from a scientific perspective. This conflict leads to many still unsolved challenges, especially regarding the quantification and aggregation of the components and their suitable level of complexity. This thesis therefore aims at advancing the scientific foundation of such studies by translating the concept of vulnerability into a systematic assessment structure. This includes all components and implies that for each considered impact (e.g. flash floods) a clear sensitive entity is defined (e.g. settlements) and related to a direction of change for a specific climatic stimulus (e.g. increasing impact due to increasing days with heavy precipitation). Regarding the challenging aggregation procedure, two alternative methods allowing a cross-sectoral overview are introduced and their advantages and disadvantages discussed. This assessment structure is subsequently exemplified for municipalities of the German state North Rhine-Westphalia via an indicator-based deductive approach using information from literature. It can be transferred also to other regions. As for many relevant sectors, suitable indicators to express the vulnerability components are lacking, new quantification methods are developed and applied in this thesis, for example for the forestry and health sector. A lack of empirical data on relevant thresholds is evident, for example which climatic changes would cause significant impacts. Consequently, the multi-sectoral study could only provide relative measures for each municipality, in relation to the region. To fill this gap, an exemplary sectoral study was carried out on windthrow impacts in forests to provide an absolute quantification of the present and future impact. This is achieved by formulating an empirical relation between the forest characteristics and damage based on data from a past storm event. The resulting measure indicating the sensitivity is then combined with wind conditions. Multi-sectoral vulnerability assessments require considerable resources, which often hinders the implementation. Thus, in a next step, the potential for reducing the complexity is explored. To predict forest fire occurrence, numerous meteorological indices are available, spanning over a range of complexity. Comparing their performance, the single variable relative humidity outperforms complex indicators for most German states in explaining the monthly fire pattern. This is the case albeit it is itself an input factor in most indices. Thus, this meteorological factor alone is well suited to evaluate forest fire danger in many Germany regions and allows a resource-efficient assessment. Similarly, the complexity of methods is assessed regarding the application of the ecohydrological model SWIM to the German region of Brandenburg. The inter-annual soil moisture levels simulated by this model can only poorly be represented by simpler statistical approach using the same input data. However, on a decadal time horizon, the statistical approach shows a good performance and a strong dominance of the soil characteristic field capacity. This points to a possibility to reduce the input factors for predicting long-term averages, but the results are restricted by a lack of empirical data on soil water for validation. The presented assessments of vulnerability and its components have shown that they are still a challenging scientific undertaking. Following the applied terminology, many problems arise when implementing it for regional studies. Advances in addressing shortcomings of previous studies have been made by constructing a new systematic structure for characterizing and aggregating vulnerability components. For this, multiple approaches were presented, but they have specific advantages and disadvantages, which should also be carefully considered in future studies. There is a potential to simplify some methods, but more systematic assessments on this are needed. Overall, this thesis strengthened the use of vulnerability assessments as a tool to support adaptation by enhancing their scientific basis.}, language = {en} }