@unpublished{AlsaedyTarkhanov2015, author = {Alsaedy, Ammar and Tarkhanov, Nikolai Nikolaevich}, title = {Weak boundary values of solutions of Lagrangian problems}, volume = {4}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72617}, pages = {24}, year = {2015}, abstract = {We define weak boundary values of solutions to those nonlinear differential equations which appear as Euler-Lagrange equations of variational problems. As a result we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also analyse if the concept of mapping degree of current importance applies to the study of Lagrangian problems.}, language = {en} } @phdthesis{Beinrucker2015, author = {Beinrucker, Andre}, title = {Variable selection in high dimensional data analysis with applications}, school = {Universit{\"a}t Potsdam}, pages = {VII, 107}, year = {2015}, language = {en} } @article{SamarasNicolaeBoeckmannetal.2015, author = {Samaras, Stefanos and Nicolae, Doina and B{\"o}ckmann, Christine and Vasilescu, Jeni and Binietoglou, Ioannis and Labzovskii, Lev and Toanca, Florica and Papayannis, Alexandros}, title = {Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols}, series = {Journal of computational physics}, volume = {299}, journal = {Journal of computational physics}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9991}, doi = {10.1016/j.jcp.2015.06.045}, pages = {156 -- 174}, year = {2015}, abstract = {In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} } @article{MoestaAnderssonMetzgeretal.2015, author = {Moesta, Philip and Andersson, Lars and Metzger, Jan and Szilagyi, Bela and Winicour, Jeffrey}, title = {The merger of small and large black holes}, series = {Classical and quantum gravit}, volume = {32}, journal = {Classical and quantum gravit}, number = {23}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0264-9381}, doi = {10.1088/0264-9381/32/23/235003}, pages = {20}, year = {2015}, abstract = {We present simulations of binary black-hole mergers in which, after the common outer horizon has formed, the marginally outer trapped surfaces (MOTSs) corresponding to the individual black holes continue to approach and eventually penetrate each other. This has very interesting consequences according to recent results in the theory of MOTSs. Uniqueness and stability theorems imply that two MOTSs which touch with a common outer normal must be identical. This suggests a possible dramatic consequence of the collision between a small and large black hole. If the penetration were to continue to completion, then the two MOTSs would have to coalesce, by some combination of the small one growing and the big one shrinking. Here we explore the relationship between theory and numerical simulations, in which a small black hole has halfway penetrated a large one.}, language = {en} } @misc{WichaKeesSolmsetal.2015, author = {Wicha, Sebastian G. and Kees, Martin G. and Solms, Alexander Maximilian and Minichmayr, Iris K. and Kratzer, Alexander and Kloft, Charlotte}, title = {TDMx: A novel web-based open-access support tool for optimising antimicrobial dosing regimens in clinical routine}, series = {International journal of antimicrobial agents}, volume = {45}, journal = {International journal of antimicrobial agents}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0924-8579}, doi = {10.1016/j.ijantimicag.2014.12.010}, pages = {442 -- 444}, year = {2015}, language = {en} } @article{Kroencke2015, author = {Kr{\"o}ncke, Klaus}, title = {Stability and instability of Ricci solitons}, series = {Calculus of variations and partial differential equations}, volume = {53}, journal = {Calculus of variations and partial differential equations}, number = {1-2}, publisher = {Springer}, address = {Heidelberg}, issn = {0944-2669}, doi = {10.1007/s00526-014-0748-3}, pages = {265 -- 287}, year = {2015}, abstract = {We consider the volume- normalized Ricci flow close to compact shrinking Ricci solitons. We show that if a compact Ricci soliton (M, g) is a local maximum of Perelman's shrinker entropy, any normalized Ricci flowstarting close to it exists for all time and converges towards a Ricci soliton. If g is not a local maximum of the shrinker entropy, we showthat there exists a nontrivial normalized Ricci flow emerging from it. These theorems are analogues of results in the Ricci- flat and in the Einstein case (Haslhofer and Muller, arXiv:1301.3219, 2013; Kroncke, arXiv: 1312.2224, 2013).}, language = {en} } @article{BagderinaTarkhanov2015, author = {Bagderina, Yulia Yu. and Tarkhanov, Nikolai Nikolaevich}, title = {Solution of the equivalence problem for the third Painleve equation}, series = {Journal of mathematical physics}, volume = {56}, journal = {Journal of mathematical physics}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0022-2488}, doi = {10.1063/1.4905383}, pages = {15}, year = {2015}, abstract = {We find necessary conditions for a second order ordinary differential equation to be equivalent to the Painleve III equation under a general point transformation. Their sufficiency is established by reduction to known results for the equations of the form y ' = f (x, y). We consider separately the generic case and the case of reducibility to an autonomous equation. The results are illustrated by the primary resonance equation.}, language = {en} } @misc{FladHarutyunyanSchulze2015, author = {Flad, Heinz-J{\"u}rgen and Harutyunyan, Gohar and Schulze, Bert-Wolfgang}, title = {Singular analysis and coupled cluster theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102306}, pages = {31530 -- 31541}, year = {2015}, abstract = {The primary motivation for systematic bases in first principles electronic structure simulations is to derive physical and chemical properties of molecules and solids with predetermined accuracy. This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near coalescence points of particles. Singular analysis provides a convenient framework to study the asymptotic behaviour of wavefunctions near these singularities. In the present work, we want to introduce the mathematical framework of singular analysis and discuss a novel asymptotic parametrix construction for Hamiltonians of many-particle Coulomb systems. This corresponds to the construction of an approximate inverse of a Hamiltonian operator with remainder given by a so-called Green operator. The Green operator encodes essential asymptotic information and we present as our main result an explicit asymptotic formula for this operator. First applications to many-particle models in quantum chemistry are presented in order to demonstrate the feasibility of our approach. The focus is on the asymptotic behaviour of ladder diagrams, which provide the dominant contribution to shortrange correlation in coupled cluster theory. Furthermore, we discuss possible consequences of our asymptotic analysis with respect to adaptive wavelet approximation.}, language = {en} } @article{FladHarutyunyanSchulze2015, author = {Flad, Heinz-J{\"u}rgen and Harutyunyan, Gohar and Schulze, Bert-Wolfgang}, title = {Singular analysis and coupled cluster theory}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {47}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp01183c}, pages = {31530 -- 31541}, year = {2015}, abstract = {The primary motivation for systematic bases in first principles electronic structure simulations is to derive physical and chemical properties of molecules and solids with predetermined accuracy. This requires a detailed understanding of the asymptotic behaviour of many-particle Coulomb systems near coalescence points of particles. Singular analysis provides a convenient framework to study the asymptotic behaviour of wavefunctions near these singularities. In the present work, we want to introduce the mathematical framework of singular analysis and discuss a novel asymptotic parametrix construction for Hamiltonians of many-particle Coulomb systems. This corresponds to the construction of an approximate inverse of a Hamiltonian operator with remainder given by a so-called Green operator. The Green operator encodes essential asymptotic information and we present as our main result an explicit asymptotic formula for this operator. First applications to many-particle models in quantum chemistry are presented in order to demonstrate the feasibility of our approach. The focus is on the asymptotic behaviour of ladder diagrams, which provide the dominant contribution to short-range correlation in coupled cluster theory. Furthermore, we discuss possible consequences of our asymptotic analysis with respect to adaptive wavelet approximation.}, language = {en} } @phdthesis{Wallenta2015, author = {Wallenta, Daniel}, title = {Sequences of compact curvature}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87489}, school = {Universit{\"a}t Potsdam}, pages = {viii, 73}, year = {2015}, abstract = {By perturbing the differential of a (cochain-)complex by "small" operators, one obtains what is referred to as quasicomplexes, i.e. a sequence whose curvature is not equal to zero in general. In this situation the cohomology is no longer defined. Note that it depends on the structure of the underlying spaces whether or not an operator is "small." This leads to a magical mix of perturbation and regularisation theory. In the general setting of Hilbert spaces compact operators are "small." In order to develop this theory, many elements of diverse mathematical disciplines, such as functional analysis, differential geometry, partial differential equation, homological algebra and topology have to be combined. All essential basics are summarised in the first chapter of this thesis. This contains classical elements of index theory, such as Fredholm operators, elliptic pseudodifferential operators and characteristic classes. Moreover we study the de Rham complex and introduce Sobolev spaces of arbitrary order as well as the concept of operator ideals. In the second chapter, the abstract theory of (Fredholm) quasicomplexes of Hilbert spaces will be developed. From the very beginning we will consider quasicomplexes with curvature in an ideal class. We introduce the Euler characteristic, the cone of a quasiendomorphism and the Lefschetz number. In particular, we generalise Euler's identity, which will allow us to develop the Lefschetz theory on nonseparable Hilbert spaces. Finally, in the third chapter the abstract theory will be applied to elliptic quasicomplexes with pseudodifferential operators of arbitrary order. We will show that the Atiyah-Singer index formula holds true for those objects and, as an example, we will compute the Euler characteristic of the connection quasicomplex. In addition to this we introduce geometric quasiendomorphisms and prove a generalisation of the Lefschetz fixed point theorem of Atiyah and Bott.}, language = {en} } @article{Koppitz2015, author = {Koppitz, J{\"o}rg}, title = {Separation of O-n from its proper subsemigroups by a single identity}, series = {Semigroup forum}, volume = {91}, journal = {Semigroup forum}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0037-1912}, doi = {10.1007/s00233-014-9674-0}, pages = {128 -- 138}, year = {2015}, abstract = {For each , we construct an identity that fails in the semigroup of all order-preserving maps on the -element chain but holds in each proper subsemigroup of O-n.}, language = {en} } @inproceedings{SteenholdtEdlundAinsworthetal.2015, author = {Steenholdt, Casper and Edlund, Helena and Ainsworth, Mark A. and Brynskov, Jorn and Thomsen, Ole Ostergaard and Huisinga, Wilhelm and Kloft, Charlotte}, title = {Relationship between measures of infliximab exposure and clinical outcome of infliximab intensification at therapeutic failure in Crohn's disease}, series = {JOURNAL OF CROHNS \& COLITIS}, volume = {9}, booktitle = {JOURNAL OF CROHNS \& COLITIS}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1873-9946}, pages = {S330 -- S330}, year = {2015}, language = {en} } @phdthesis{Conforti2015, author = {Conforti, Giovanni}, title = {Reciprocal classes of continuous time Markov Chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82255}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 183}, year = {2015}, abstract = {In this thesis we study reciprocal classes of Markov chains. Given a continuous time Markov chain on a countable state space, acting as reference dynamics, the associated reciprocal class is the set of all probability measures on path space that can be written as a mixture of its bridges. These processes possess a conditional independence property that generalizes the Markov property, and evolved from an idea of Schr{\"o}dinger, who wanted to obtain a probabilistic interpretation of quantum mechanics. Associated to a reciprocal class is a set of reciprocal characteristics, which are space-time functions that determine the reciprocal class. We compute explicitly these characteristics, and divide them into two main families: arc characteristics and cycle characteristics. As a byproduct, we obtain an explicit criterion to check when two different Markov chains share their bridges. Starting from the characteristics we offer two different descriptions of the reciprocal class, including its non-Markov probabilities. The first one is based on a pathwise approach and the second one on short time asymptotic. With the first approach one produces a family of functional equations whose only solutions are precisely the elements of the reciprocal class. These equations are integration by parts on path space associated with derivative operators which perturb the paths by mean of the addition of random loops. Several geometrical tools are employed to construct such formulas. The problem of obtaining sharp characterizations is also considered, showing some interesting connections with discrete geometry. Examples of such formulas are given in the framework of counting processes and random walks on Abelian groups, where the set of loops has a group structure. In addition to this global description, we propose a second approach by looking at the short time behavior of a reciprocal process. In the same way as the Markov property and short time expansions of transition probabilities characterize Markov chains, we show that a reciprocal class is characterized by imposing the reciprocal property and two families of short time expansions for the bridges. Such local approach is suitable to study reciprocal processes on general countable graphs. As application of our characterization, we considered several interesting graphs, such as lattices, planar graphs, the complete graph, and the hypercube. Finally, we obtain some first results about concentration of measure implied by lower bounds on the reciprocal characteristics.}, language = {en} } @unpublished{Conforti2015, author = {Conforti, Giovanni}, title = {Reciprocal classes of continuous time Markov Chains}, volume = {4}, number = {8}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78234}, pages = {198}, year = {2015}, abstract = {In this work we study reciprocal classes of Markov walks on graphs. Given a continuous time reference Markov chain on a graph, its reciprocal class is the set of all probability measures which can be represented as a mixture of the bridges of the reference walks. We characterize reciprocal classes with two different approaches. With the first approach we found it as the set of solutions to duality formulae on path space, where the differential operators have the interpretation of the addition of infinitesimal random loops to the paths of the canonical process. With the second approach we look at short time asymptotics of bridges. Both approaches allow an explicit computation of reciprocal characteristics, which are divided into two families, the loop characteristics and the arc characteristics. They are those specific functionals of the generator of the reference chain which determine its reciprocal class. We look at the specific examples such as Cayley graphs, the hypercube and planar graphs. Finally we establish the first concentration of measure results for the bridges of a continuous time Markov chain based on the reciprocal characteristics.}, language = {en} } @unpublished{ConfortiRoelly2015, author = {Conforti, Giovanni and Roelly, Sylvie}, title = {Reciprocal class of random walks on an Abelian group}, volume = {4}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72604}, pages = {22}, year = {2015}, abstract = {Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of a continuous time random walk with values in a countable Abelian group, we compute explicitly its reciprocal characteristics and we present an integral characterization of it. Our main tool is a new iterated version of the celebrated Mecke's formula from the point process theory, which allows us to study, as transformation on the path space, the addition of random loops. Thanks to the lattice structure of the set of loops, we even obtain a sharp characterization. At the end, we discuss several examples to illustrate the richness of reciprocal classes. We observe how their structure depends on the algebraic properties of the underlying group.}, language = {en} } @article{ConfortiPraRoelly2015, author = {Conforti, Giovanni and Pra, Paolo Dai and Roelly, Sylvie}, title = {Reciprocal Class of Jump Processes}, series = {Journal of theoretical probability}, volume = {30}, journal = {Journal of theoretical probability}, publisher = {Springer}, address = {New York}, issn = {0894-9840}, doi = {10.1007/s10959-015-0655-3}, pages = {551 -- 580}, year = {2015}, abstract = {Processes having the same bridges as a given reference Markov process constitute its reciprocal class. In this paper we study the reciprocal class of compound Poisson processes whose jumps belong to a finite set . We propose a characterization of the reciprocal class as the unique set of probability measures on which a family of time and space transformations induces the same density, expressed in terms of the reciprocal invariants. The geometry of plays a crucial role in the design of the transformations, and we use tools from discrete geometry to obtain an optimal characterization. We deduce explicit conditions for two Markov jump processes to belong to the same class. Finally, we provide a natural interpretation of the invariants as short-time asymptotics for the probability that the reference process makes a cycle around its current state.}, language = {en} } @article{LyuQianSchulze2015, author = {Lyu, Xiaojing and Qian, Tao and Schulze, Bert-Wolfgang}, title = {Order filtrations of the edge algebra}, series = {Journal of pseudo-differential operators and applications}, volume = {6}, journal = {Journal of pseudo-differential operators and applications}, number = {3}, publisher = {Springer}, address = {Basel}, issn = {1662-9981}, doi = {10.1007/s11868-015-0126-8}, pages = {279 -- 305}, year = {2015}, abstract = {By edge algebra we understand a pseudo-differential calculus on a manifold with edge. The operators have a two-component principal symbolic hierarchy which determines operators up to lower order terms. Those belong to a filtration of the corresponding operator spaces. We give a new characterisation of this structure, based on an alternative representation of edge amplitude functions only containing holomorphic edge-degenerate Mellin symbols.}, language = {en} } @article{KellerRoellyValleriani2015, author = {Keller, Peter and Roelly, Sylvie and Valleriani, Angelo}, title = {On time duality for Markov Chains}, series = {Stochastic models}, volume = {31}, journal = {Stochastic models}, number = {1}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1532-6349}, doi = {10.1080/15326349.2014.969736}, pages = {98 -- 118}, year = {2015}, abstract = {For an irreducible continuous time Markov chain, we derive the distribution of the first passage time from a given state i to another given state j and the reversed passage time from j to i, each under the condition of no return to the starting point. When these two distributions are identical, we say that i and j are in time duality. We introduce a new condition called permuted balance that generalizes the concept of reversibility and provides sufficient criteria, based on the structure of the transition graph of the Markov chain. Illustrative examples are provided.}, language = {en} } @article{Kroencke2015, author = {Kroencke, Klaus}, title = {On the stability of Einstein manifolds}, series = {Annals of global analysis and geometry}, volume = {47}, journal = {Annals of global analysis and geometry}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0232-704X}, doi = {10.1007/s10455-014-9436-y}, pages = {81 -- 98}, year = {2015}, abstract = {Certain curvature conditions for the stability of Einstein manifolds with respect to the Einstein-Hilbert action are given. These conditions are given in terms of quantities involving the Weyl tensor and the Bochner tensor. In dimension six, a stability criterion involving the Euler characteristic is given.}, language = {en} } @unpublished{GibaliShoikhetTarkhanov2015, author = {Gibali, Aviv and Shoikhet, David and Tarkhanov, Nikolai Nikolaevich}, title = {On the convergence of continuous Newton method}, volume = {4}, number = {10}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81537}, pages = {15}, year = {2015}, abstract = {In this paper we study the convergence of continuous Newton method for solving nonlinear equations with holomorphic mappings in complex Banach spaces. Our contribution is based on a recent progress in the geometric theory of spirallike functions. We prove convergence theorems and illustrate them by numerical simulations.}, language = {en} }