@article{RychkovYablokovRychkov2012, author = {Rychkov, Dmitry and Yablokov, M. and Rychkov, A.}, title = {Chemical and physical surface modification of PTFE films-an approach to produce stable electrets}, series = {Applied physics : A, Materials science \& processing}, volume = {107}, journal = {Applied physics : A, Materials science \& processing}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-012-6834-5}, pages = {589 -- 596}, year = {2012}, abstract = {The thermal stability of positive charge has been investigated in chemically and physically treated polytetrafluoroethylene (PTFE) films. It has been found that virgin films, oriented by the manufacturer, display an increase in thermal stability of positive charge with an increase of the initial value of surface potential. Such an anomalous behavior is explained by the influence of a negative tribocharge, trapped some small distance below the surface. In PTFE samples treated with orthophosphoric acid and with tetraethoxysilane, a considerable improvement of positive charge stability has been achieved, but no influence of the initial value of surface potential has been observed. However, this influence should be kept in mind when comparing charge stability in virgin and modified samples. In nonoriented PTFE films, no influence of the initial value of surface potential on charge stability has been observed. This could be due to the fact that these films did not possess a noticeable negative tribocharge. After the treatment in glow-discharge defluorination, oxidation and appearance of polar groups have been detected on the surface. These changes in chemical composition of a PTFE surface resulted in a noticeable improvement in thermal stability of positively charged electrets. This improvement is attributed to the formation of deeper traps on the modified surface.}, language = {en} }