@article{FichtnerBarbierAnnunziataetal.2020, author = {Fichtner, Franziska and Barbier, Francois F. and Annunziata, Maria Grazia and Feil, Regina and Olas, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd and Stitt, Mark and Beveridge, Christine A. and Lunn, John Edward}, title = {Regulation of shoot branching in arabidopsis by trehalose 6-phosphate}, series = {New phytologist : international journal of plant science}, volume = {229}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.17006}, pages = {2135 -- 2151}, year = {2020}, abstract = {Trehalose 6-phosphate (Tre6P) is a sucrose signalling metabolite that has been implicated in regulation of shoot branching, but its precise role is not understood. We expressed tagged forms of TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) to determine where Tre6P is synthesized in arabidopsis (Arabidopsis thaliana), and investigated the impact of localized changes in Tre6P levels, in axillary buds or vascular tissues, on shoot branching in wild-type and branching mutant backgrounds. TPS1 is expressed in axillary buds and the subtending vasculature, as well as in the leaf and stem vasculature. Expression of a heterologous Tre6P phosphatase (TPP) to lower Tre6P in axillary buds strongly delayed bud outgrowth in long days and inhibited branching in short days. TPP expression in the vasculature also delayed lateral bud outgrowth and decreased branching. Increased Tre6P in the vasculature enhanced branching and was accompanied by higher expression of FLOWERING LOCUS T (FT) and upregulation of sucrose transporters. Increased vascular Tre6P levels enhanced branching in branched1 but not in ft mutant backgrounds. These results provide direct genetic evidence of a local role for Tre6P in regulation of axillary bud outgrowth within the buds themselves, and also connect Tre6P with systemic regulation of shoot branching via FT.}, language = {en} } @article{BemervanMourikMuinoetal.2017, author = {Bemer, Marian and van Mourik, Hilda and Muino, Jose M. and Ferrandiz, Cristina and Kaufmann, Kerstin and Angenent, Gerco C.}, title = {FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture}, series = {Journal of experimental botany}, volume = {68}, journal = {Journal of experimental botany}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erx184}, pages = {3391 -- 3403}, year = {2017}, abstract = {MADS-domain transcription factors are well known for their roles in plant development and regulate sets of downstream genes that have been uncovered by high-throughput analyses. A considerable number of these targets are predicted to function in hormone responses or responses to environmental stimuli, suggesting that there is a close link between developmental and environmental regulators of plant growth and development. Here, we show that the Arabidopsis MADS-domain factor FRUITFULL (FUL) executes several functions in addition to its noted role in fruit development. Among the direct targets of FUL, we identified SMALL AUXIN UPREGULATED RNA 10 (SAUR10), a growth regulator that is highly induced by a combination of auxin and brassinosteroids and in response to reduced R:FR light. Interestingly, we discovered that SAUR10 is repressed by FUL in stems and inflorescence branches. SAUR10 is specifically expressed at the abaxial side of these branches and this localized activity is influenced by hormones, light conditions and by FUL, which has an effect on branch angle. Furthermore, we identified a number of other genes involved in hormone pathways and light signalling as direct targets of FUL in the stem, demonstrating a connection between developmentally and environmentally regulated growth programs.}, language = {en} }