@article{MengesHoviusAndermannetal.2020, author = {Menges, Johanna and Hovius, Niels and Andermann, Christoff and Lupker, Maarten and Haghipour, Negar and M{\"a}rki, Lena and Sachse, Dirk}, title = {Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {286}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {New York [u.a.]}, issn = {0016-7037}, doi = {10.1016/j.gca.2020.07.003}, pages = {159 -- 176}, year = {2020}, abstract = {Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates.}, language = {en} } @article{VossBookhagenSachseetal.2020, author = {Voss, Katalyn A. and Bookhagen, Bodo and Sachse, Dirk and Chadwick, Oliver A.}, title = {Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal}, series = {Journal of hydrology}, volume = {586}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2020.124802}, pages = {17}, year = {2020}, abstract = {The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater.}, language = {en} } @misc{RepaschWittmannScheingrossetal.2020, author = {Repasch, Marisa and Wittmann, Hella and Scheingross, Joel S. and Sachse, Dirk and Szupiany, Ricardo and Orfeo, Oscar and Fuchs, Margret and Hovius, Niels}, title = {Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric 10Be}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1119}, issn = {1866-8372}, doi = {10.25932/publishup-49432}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-494324}, pages = {21}, year = {2020}, abstract = {Quantifying the time scales of sediment transport and storage through river systems is fundamental for understanding weathering processes, biogeochemical cycling, and improving watershed management, but measuring sediment transit time is challenging. Here we provide the first systematic test of measuring cosmogenic meteoric Beryllium-10 (10Bem) in the sediment load of a large alluvial river to quantify sediment transit times. We take advantage of a natural experiment in the Rio Bermejo, a lowland alluvial river traversing the east Andean foreland basin in northern Argentina. This river has no tributaries along its trunk channel for nearly 1,300 km downstream from the mountain front. We sampled suspended sediment depth profiles along the channel and measured the concentrations of 10Bem in the chemically extracted grain coatings. We calculated depth-integrated 10Bem concentrations using sediment flux data and found that 10Bem concentrations increase 230\% from upstream to downstream, indicating a mean total sediment transit time of 8.4 ± 2.2 kyr. Bulk sediment budget-based estimates of channel belt and fan storage times suggest that the 10Bem tracer records mixing of old and young sediment reservoirs. On a reach scale, 10Bem transit times are shorter where the channel is braided and superelevated above the floodplain, and longer where the channel is incised and meandering, suggesting that transit time is controlled by channel morphodynamics. This is the first systematic application of 10Bem as a sediment transit time tracer and highlights the method's potential for inferring sediment routing and storage dynamics in large river systems.}, language = {en} } @article{RepaschWittmannScheingrossetal.2020, author = {Repasch, Marisa and Wittmann, Hella and Scheingross, Joel S. and Sachse, Dirk and Szupiany, Ricardo and Orfeo, Oscar and Fuchs, Margret and Hovius, Niels}, title = {Sediment Transit Time and Floodplain Storage Dynamics in Alluvial Rivers Revealed by Meteoric 10Be}, series = {Journal of Geophysical Research: Earth Surface}, volume = {125}, journal = {Journal of Geophysical Research: Earth Surface}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2169-9011}, doi = {10.1029/2019JF005419}, pages = {19}, year = {2020}, abstract = {Quantifying the time scales of sediment transport and storage through river systems is fundamental for understanding weathering processes, biogeochemical cycling, and improving watershed management, but measuring sediment transit time is challenging. Here we provide the first systematic test of measuring cosmogenic meteoric Beryllium-10 (10Bem) in the sediment load of a large alluvial river to quantify sediment transit times. We take advantage of a natural experiment in the Rio Bermejo, a lowland alluvial river traversing the east Andean foreland basin in northern Argentina. This river has no tributaries along its trunk channel for nearly 1,300 km downstream from the mountain front. We sampled suspended sediment depth profiles along the channel and measured the concentrations of 10Bem in the chemically extracted grain coatings. We calculated depth-integrated 10Bem concentrations using sediment flux data and found that 10Bem concentrations increase 230\% from upstream to downstream, indicating a mean total sediment transit time of 8.4 ± 2.2 kyr. Bulk sediment budget-based estimates of channel belt and fan storage times suggest that the 10Bem tracer records mixing of old and young sediment reservoirs. On a reach scale, 10Bem transit times are shorter where the channel is braided and superelevated above the floodplain, and longer where the channel is incised and meandering, suggesting that transit time is controlled by channel morphodynamics. This is the first systematic application of 10Bem as a sediment transit time tracer and highlights the method's potential for inferring sediment routing and storage dynamics in large river systems.}, language = {en} } @misc{DietzeMangelsdorfAndreevetal.2020, author = {Dietze, Elisabeth and Mangelsdorf, Kai and Andreev, Andrei and Karger, Cornelia and Schreuder, Laura T. and Hopmans, Ellen C. and Rach, Oliver and Sachse, Dirk and Wennrich, Volker and Herzschuh, Ulrike}, title = {Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El'gygytgyn sediments}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-51684}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516843}, pages = {22}, year = {2020}, abstract = {Landscapes in high northern latitudes are assumed to be highly sensitive to future global change, but the rates and long-term trajectories of changes are rather uncertain. In the boreal zone, fires are an important factor in climate-vegetation interactions and biogeochemical cycles. Fire regimes are characterized by small, frequent, low-intensity fires within summergreen boreal forests dominated by larch, whereas evergreen boreal forests dominated by spruce and pine burn large areas less frequently but at higher intensities. Here, we explore the potential of the monosaccharide anhydrides (MA) levoglucosan, mannosan and galactosan to serve as proxies of low-intensity biomass burning in glacial-to-interglacial lake sediments from the high northern latitudes. We use sediments from Lake El'gygytgyn (cores PG 1351 and ICDP 5011-1), located in the far north-east of Russia, and study glacial and interglacial samples of the last 430 kyr (marine isotope stages 5e, 6, 7e, 8, 11c and 12) that had different climate and biome configurations. Combined with pollen and non-pollen palynomorph records from the same samples, we assess how far the modern relationships between fire, climate and vegetation persisted during the past, on orbital to centennial timescales. We find that MAs attached to particulates were well-preserved in up to 430 kyr old sediments with higher influxes from low-intensity biomass burning in interglacials compared to glacials. MA influxes significantly increase when summergreen boreal forest spreads closer to the lake, whereas they decrease when tundra-steppe environments and, especially, Sphagnum peatlands spread. This suggests that low-temperature fires are a typical characteristic of Siberian larch forests also on long timescales. The results also suggest that low-intensity fires would be reduced by vegetation shifts towards very dry environments due to reduced biomass availability, as well as by shifts towards peatlands, which limits fuel dryness. In addition, we observed very low MA ratios, which we interpret as high contributions of galactosan and mannosan from biomass sources other than those currently monitored, such as the moss-lichen mats in the understorey of the summergreen boreal forest. Overall, sedimentary MAs can provide a powerful proxy for fire regime reconstructions and extend our knowledge of long-term natural fire-climate-vegetation feedbacks in the high northern latitudes.}, language = {en} } @article{DietzeMangelsdorfAndreevetal.2020, author = {Dietze, Elisabeth and Mangelsdorf, Kai and Andreev, Andrei and Karger, Cornelia and Schreuder, Laura T. and Hopmans, Ellen C. and Rach, Oliver and Sachse, Dirk and Wennrich, Volker and Herzschuh, Ulrike}, title = {Relationships between low-temperature fires, climate and vegetation during three late glacials and interglacials of the last 430 kyr in northeastern Siberia reconstructed from monosaccharide anhydrides in Lake El'gygytgyn sediments}, series = {Climate of the Past}, volume = {16}, journal = {Climate of the Past}, number = {2}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1814-9332}, doi = {10.5194/cp-16-799-2020}, pages = {788 -- 818}, year = {2020}, abstract = {Landscapes in high northern latitudes are assumed to be highly sensitive to future global change, but the rates and long-term trajectories of changes are rather uncertain. In the boreal zone, fires are an important factor in climate-vegetation interactions and biogeochemical cycles. Fire regimes are characterized by small, frequent, low-intensity fires within summergreen boreal forests dominated by larch, whereas evergreen boreal forests dominated by spruce and pine burn large areas less frequently but at higher intensities. Here, we explore the potential of the monosaccharide anhydrides (MA) levoglucosan, mannosan and galactosan to serve as proxies of low-intensity biomass burning in glacial-to-interglacial lake sediments from the high northern latitudes. We use sediments from Lake El'gygytgyn (cores PG 1351 and ICDP 5011-1), located in the far north-east of Russia, and study glacial and interglacial samples of the last 430 kyr (marine isotope stages 5e, 6, 7e, 8, 11c and 12) that had different climate and biome configurations. Combined with pollen and non-pollen palynomorph records from the same samples, we assess how far the modern relationships between fire, climate and vegetation persisted during the past, on orbital to centennial timescales. We find that MAs attached to particulates were well-preserved in up to 430 kyr old sediments with higher influxes from low-intensity biomass burning in interglacials compared to glacials. MA influxes significantly increase when summergreen boreal forest spreads closer to the lake, whereas they decrease when tundra-steppe environments and, especially, Sphagnum peatlands spread. This suggests that low-temperature fires are a typical characteristic of Siberian larch forests also on long timescales. The results also suggest that low-intensity fires would be reduced by vegetation shifts towards very dry environments due to reduced biomass availability, as well as by shifts towards peatlands, which limits fuel dryness. In addition, we observed very low MA ratios, which we interpret as high contributions of galactosan and mannosan from biomass sources other than those currently monitored, such as the moss-lichen mats in the understorey of the summergreen boreal forest. Overall, sedimentary MAs can provide a powerful proxy for fire regime reconstructions and extend our knowledge of long-term natural fire-climate-vegetation feedbacks in the high northern latitudes.}, language = {en} }