@article{PuhlmannHenkelHeueretal.2016, author = {Puhlmann, Dirk and Henkel, Carsten and Heuer, Axel and Pieplow, Gregor and Menzel, Ralf}, title = {Characterization of a remote optical element with bi-photons}, series = {Physica scripta : an international journal for experimental and theoretical physics}, volume = {91}, journal = {Physica scripta : an international journal for experimental and theoretical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0031-8949}, doi = {10.1088/0031-8949/91/2/023006}, pages = {113 -- 114}, year = {2016}, abstract = {We present a simple setup that exploits the interference of entangled photon pairs. 'Signal' photons are sent through a Mach-Zehnder-like interferometer, while 'idlers' are detected in a variable polarization state. Two-photon interference (in coincidence detection) is observed with very high contrast and for significant time delays between signal and idler detection events. This is explained by quantum erasure of the polarization tag and a delayed choice protocol involving a non-local virtual polarizer. The phase of the two-photon fringes is scanned by varying the path length in the signal beam or by rotating a birefringent crystal in the idler beam. We exploit this to characterize one beam splitter of the signal photon interferometer (reflection and transmission amplitudes including losses), using only information about coincidences and control parameters in the idler path. This is possible because our bi-photon state saturates the Greenberger-Yelin-Englert inequality between contrast and predictability.}, language = {en} } @misc{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {Gravitational properties of light}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90553}, year = {2016}, abstract = {The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources.}, language = {en} } @article{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {Gravitational properties of light}, series = {New journal of physics : the open-access journal for physics}, volume = {18}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Science}, address = {London}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/2/023009}, pages = {1 -- 16}, year = {2016}, abstract = {The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources.}, language = {en} } @article{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {Gravitational properties of light-the gravitational field of a laser pulse}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/2/023009}, pages = {16}, year = {2016}, abstract = {The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources.}, language = {en} } @article{SandmannGarzMenzel2016, author = {Sandmann, Michael and Garz, Andreas and Menzel, Ralf}, title = {Physiological response of two different Chlamydomonas reinhardtii strains to light-dark rhythms}, series = {Botany}, volume = {94}, journal = {Botany}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {1916-2790}, doi = {10.1139/cjb-2015-0144}, pages = {53 -- 64}, year = {2016}, abstract = {Cells of a cell-wall deficient line (cw15-type) of Chlamydomonas reinhardtii and of the corresponding wild type were grown during repetitive light-dark cycles. In a direct comparison, both lines showed approximately the same relative biomass increase during light phase but the cw-line produced significantly more, and smaller, daughter cells. Throughout the light period the average cellular starch content, the cellular chlorophyll content, the cellular rate of dark respiration, and the cellular rate of photosynthesis of the cw-line was lower. Despite this, several non-cell volume related parameters like the development of starch content per cell volume were clearly different over time between the strains. Additionally, the chlorophyll-based photosynthesis rates were 2-fold higher in the mutant than in the wild-type cells, and the ratio of chlorophyll a to chlorophyll b as well as the light-saturation index were also consistently higher in the mutant cells. Differences in the starch content were also confirmed by single cell analyses using a sensitive SHG-based microscopy approach. In summary, the cw15-type mutant deviates from its genetic background in the entire cell physiology. Both lines should be used in further studies in comparative systems biology with focus on the detailed relation between cell volume increase, photosynthesis, starch metabolism, and daughter cell productivity.}, language = {en} } @article{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {The effect of entanglement in gravitational photon-photon scattering}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {115}, journal = {epl : a letters journal exploring the frontiers of physics}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/115/51002}, pages = {S12 -- S13}, year = {2016}, abstract = {The differential cross-section for gravitational photon-photon scattering calculated in perturbative quantum gravity is shown to depend on the degree of polarization entanglement of the two photons. The interaction between photons in the symmetric Bell state is stronger than between not entangled photons. In contrast, the interaction between photons in the anti-symmetric Bell state is weaker than between not entangled photons. The results are interpreted in terms of quantum interference, and it is shown how they fit into the idea of distance-dependent forces. Copyright (C) EPLA, 2016}, language = {en} }