@article{Hildebrandt2014, author = {Hildebrandt, Dieter}, title = {A software reference architecture for service-oriented 3D geovisualization systems}, series = {ISPRS International Journal of Geo-Information}, volume = {3}, journal = {ISPRS International Journal of Geo-Information}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2220-9964}, doi = {10.3390/ijgi3041445}, pages = {1445 -- 1490}, year = {2014}, language = {en} } @misc{Hildebrandt2014, author = {Hildebrandt, Dieter}, title = {A software reference architecture for service-oriented 3D geovisualization systems}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1131}, issn = {1866-8372}, doi = {10.25932/publishup-47583}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475831}, pages = {48}, year = {2014}, abstract = {Modern 3D geovisualization systems (3DGeoVSs) are complex and evolving systems that are required to be adaptable and leverage distributed resources, including massive geodata. This article focuses on 3DGeoVSs built based on the principles of service-oriented architectures, standards and image-based representations (SSI) to address practically relevant challenges and potentials. Such systems facilitate resource sharing and agile and efficient system construction and change in an interoperable manner, while exploiting images as efficient, decoupled and interoperable representations. The software architecture of a 3DGeoVS and its underlying visualization model have strong effects on the system's quality attributes and support various system life cycle activities. This article contributes a software reference architecture (SRA) for 3DGeoVSs based on SSI that can be used to design, describe and analyze concrete software architectures with the intended primary benefit of an increase in effectiveness and efficiency in such activities. The SRA integrates existing, proven technology and novel contributions in a unique manner. As the foundation for the SRA, we propose the generalized visualization pipeline model that generalizes and overcomes expressiveness limitations of the prevalent visualization pipeline model. To facilitate exploiting image-based representations (IReps), the SRA integrates approaches for the representation, provisioning and styling of and interaction with IReps. Five applications of the SRA provide proofs of concept for the general applicability and utility of the SRA. A qualitative evaluation indicates the overall suitability of the SRA, its applications and the general approach of building 3DGeoVSs based on SSI.}, language = {en} } @phdthesis{Hildebrandt2017, author = {Hildebrandt, Dieter}, title = {Service-oriented 3D geovisualization systems}, school = {Universit{\"a}t Potsdam}, pages = {xii, 268}, year = {2017}, abstract = {3D geovisualization systems (3DGeoVSs) that use 3D geovirtual environments as a conceptual and technical framework are increasingly used for various applications. They facilitate obtaining insights from ubiquitous geodata by exploiting human abilities that other methods cannot provide. 3DGeoVSs are often complex and evolving systems required to be adaptable and to leverage distributed resources. Designing a 3DGeoVS based on service-oriented architectures, standards, and image-based representations (SSI) facilitates resource sharing and the agile and efficient construction and change of interoperable systems. In particular, exploiting image-based representations (IReps) of 3D views on geodata supports taking full advantage of the potential of such system designs by providing an efficient, decoupled, interoperable, and increasingly applied representation. However, there is insufficient knowledge on how to build service-oriented, standards-based 3DGeoVSs that exploit IReps. This insufficiency is substantially due to technology and interoperability gaps between the geovisualization domain and further domains that such systems rely on. This work presents a coherent framework of contributions that support designing the software architectures of targeted systems and exploiting IReps for providing, styling, and interacting with geodata. The contributions uniquely integrate existing concepts from multiple domains and novel contributions for identified limitations. The proposed software reference architecture (SRA) for 3DGeoVSs based on SSI facilitates designing concrete software architectures of such systems. The SRA describes the decomposition of 3DGeoVSs into a network of services and integrates the following contributions to facilitate exploiting IReps effectively and efficiently. The proposed generalized visualization pipeline model generalizes the prevalent visualization pipeline model and overcomes its expressiveness limitations with respect to transforming IReps. The proposed approach for image-based provisioning enables generating and supplying service consumers with image-based views (IViews). IViews act as first-class data entities in the communication between services and provide a suitable IRep and encoding of geodata. The proposed approach for image-based styling separates concerns of styling from image generation and enables styling geodata uniformly represented as IViews specified as algebraic compositions of high-level styling operators. The proposed approach for interactive image-based novel view generation enables generating new IViews from existing IViews in response to interactive manipulations of the viewing camera and includes an architectural pattern that generalizes common novel view generation. The proposed interactive assisting, constrained 3D navigation technique demonstrates how a navigation technique can be built that supports users in navigating multiscale virtual 3D city models, operates in 3DGeoVSs based on SSI as an application of the SRA, can exploit IReps, and can support collaborating services in exploiting IReps. The validity of the contributions is supported by proof-of-concept prototype implementations and applications and effectiveness and efficiency studies including a user study. Results suggest that this work promises to support designing 3DGeoVSs based on SSI that are more effective and efficient and that can exploit IReps effectively and efficiently. This work presents a template software architecture and key building blocks for building novel IT solutions and applications for geodata, e.g., as components of spatial data infrastructures.}, language = {en} }