@misc{BeisnerGrossartGasol2019, author = {Beisner, Beatrix E. and Grossart, Hans-Peter and Gasol, Josep M.}, title = {A guide to methods for estimating phago-mixotrophy in nanophytoplankton}, series = {Journal of plankton research}, volume = {41}, journal = {Journal of plankton research}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbz008}, pages = {77 -- 89}, year = {2019}, abstract = {Growing attention to phytoplankton mixotrophy as a trophic strategy has led to significant revisions of traditional pelagic food web models and ecosystem functioning. Although some empirical estimates of mixotrophy do exist, a much broader set of in situ measurements are required to (i) identify which organisms are acting as mixotrophs in real time and to (ii) assess the contribution of their heterotrophy to biogeochemical cycling. Estimates are needed through time and across space to evaluate which environmental conditions or habitats favour mixotrophy: conditions still largely unknown. We review methodologies currently available to plankton ecologists to undertake estimates of plankton mixotrophy, in particular nanophytoplankton phago-mixotrophy. Methods are based largely on fluorescent or isotopic tracers, but also take advantage of genomics to identify phylotypes and function. We also suggest novel methods on the cusp of use for phago-mixotrophy assessment, including single-cell measurements improving our capacity to estimate mixotrophic activity and rates in wild plankton communities down to the single-cell level. Future methods will benefit from advances in nanotechnology, micromanipulation and microscopy combined with stable isotope and genomic methodologies. Improved estimates of mixotrophy will enable more reliable models to predict changes in food web structure and biogeochemical flows in a rapidly changing world.}, language = {en} } @misc{GaoMerzLischeidetal.2018, author = {Gao, Yongbo and Merz, Christoph and Lischeid, Gunnar and Schneider, Michael}, title = {A review on missing hydrological data processing}, series = {Environmental earth sciences}, volume = {77}, journal = {Environmental earth sciences}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1866-6280}, doi = {10.1007/s12665-018-7228-6}, pages = {12}, year = {2018}, abstract = {Like almost all fields of science, hydrology has benefited to a large extent from the tremendous improvements in scientific instruments that are able to collect long-time data series and an increase in available computational power and storage capabilities over the last decades. Many model applications and statistical analyses (e.g., extreme value analysis) are based on these time series. Consequently, the quality and the completeness of these time series are essential. Preprocessing of raw data sets by filling data gaps is thus a necessary procedure. Several interpolation techniques with different complexity are available ranging from rather simple to extremely challenging approaches. In this paper, various imputation methods available to the hydrological researchers are reviewed with regard to their suitability for filling gaps in the context of solving hydrological questions. The methodological approaches include arithmetic mean imputation, principal component analysis, regression-based methods and multiple imputation methods. In particular, autoregressive conditional heteroscedasticity (ARCH) models which originate from finance and econometrics will be discussed regarding their applicability to data series characterized by non-constant volatility and heteroscedasticity in hydrological contexts. The review shows that methodological advances driven by other fields of research bear relevance for a more intensive use of these methods in hydrology. Up to now, the hydrological community has paid little attention to the imputation ability of time series models in general and ARCH models in particular.}, language = {en} } @misc{JolivetFaccennaHuetetal.2013, author = {Jolivet, Laurent and Faccenna, Claudio and Huet, Benjamin and Labrousse, Loic and Le Pourhiet, Laetitia and Lacombe, Olivier and Lecomte, Emmanuel and Burov, Evguenii and Denele, Yoann and Brun, Jean-Pierre and Philippon, Melody and Paul, Anne and Salaue, Gwenaelle and Karabulut, Hayrullah and Piromallo, Claudia and Monie, Patrick and Gueydan, Frederic and Okay, Aral I. and Oberh{\"a}nsli, Roland and Pourteau, Amaury and Augier, Romain and Gadenne, Leslie and Driussi, Olivier}, title = {Aegean tectonics strain localisation, slab tearing and trench retreat}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {597}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2012.06.011}, pages = {1 -- 33}, year = {2013}, abstract = {We review the geodynamic evolution of the Aegean-Anatolia region and discuss strain localisation there over geological times. From Late Eocene to Present, crustal deformation in the Aegean backarc has localised progressively during slab retreat. Extension started with the formation of the Rhodope Metamorphic Core Complex (Eocene) and migrated to the Cyclades and the northern Menderes Massif (Oligocene and Miocene), accommodated by crustal-scale detachments and a first series of core complexes (MCCs). Extension then localised in Western Turkey, the Corinth Rift and the external Hellenic arc after Messinian times, while the North Anatolian Fault penetrated the Aegean Sea. Through time the direction and style of extension have not changed significantly except in terms of localisation. The contributions of progressive slab retreat and tearing, basal drag, extrusion tectonics and tectonic inheritance are discussed and we favour a model (I) where slab retreat is the main driving engine, (2) successive slab tearing episodes are the main causes of this stepwise strain localisation and (3) the inherited heterogeneity of the crust is a major factor for localising detachments. The continental crust has an inherited strong heterogeneity and crustal-scale contacts such as major thrust planes act as weak zones or as zones of contrast of resistance and viscosity that can localise later deformation. The dynamics of slabs at depth and the asthenospheric flow due to slab retreat also have influence strain localisation in the upper plate. Successive slab ruptures from the Middle Miocene to the late Miocene have isolated a narrow strip of lithosphere, still attached to the African lithosphere below Crete. The formation of the North Anatolian Fault is partly a consequence of this evolution. The extrusion of Anatolia and the Aegean extension are partly driven from below (asthenospheric flow) and from above (extrusion of a lid of rigid crust).}, language = {en} } @misc{HargisGotschPoradaetal.2019, author = {Hargis, Hailey and Gotsch, Sybil G. and Porada, Philipp and Moore, Georgianne W. and Ferguson, Briana and Van Stan, John T.}, title = {Arboreal epiphytes in the soil-atmosphere interface}, series = {Geosciences}, volume = {9}, journal = {Geosciences}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, doi = {10.3390/geosciences9080342}, pages = {17}, year = {2019}, abstract = {Arboreal epiphytes (plants residing in forest canopies) are present across all major climate zones and play important roles in forest biogeochemistry. The substantial water storage capacity per unit area of the epiphyte "bucket" is a key attribute underlying their capability to influence forest hydrological processes and their related mass and energy flows. It is commonly assumed that the epiphyte bucket remains saturated, or near-saturated, most of the time; thus, epiphytes (particularly vascular epiphytes) can store little precipitation, limiting their impact on the forest canopy water budget. We present evidence that contradicts this common assumption from (i) an examination of past research; (ii) new datasets on vascular epiphyte and epi-soil water relations at a tropical montane cloud forest (Monteverde, Costa Rica); and (iii) a global evaluation of non-vascular epiphyte saturation state using a process-based vegetation model, LiBry. All analyses found that the external and internal water storage capacity of epiphyte communities is highly dynamic and frequently available to intercept precipitation. Globally, non-vascular epiphytes spend <20\% of their time near saturation and regionally, including the humid tropics, model results found that non-vascular epiphytes spend similar to 1/3 of their time in the dry state (0-10\% of water storage capacity). Even data from Costa Rican cloud forest sites found the epiphyte community was saturated only 1/3 of the time and that internal leaf water storage was temporally dynamic enough to aid in precipitation interception. Analysis of the epi-soils associated with epiphytes further revealed the extent to which the epiphyte bucket emptied-as even the canopy soils were often <50\% saturated (29-53\% of all days observed). Results clearly show that the epiphyte bucket is more dynamic than currently assumed, meriting further research on epiphyte roles in precipitation interception, redistribution to the surface and chemical composition of "net" precipitation waters reaching the surface.}, language = {en} } @misc{Naacke1997, author = {Naacke, Johannes}, title = {Berichte zum Vogelschutz. - 35 (1997)}, year = {1997}, language = {de} } @misc{SommerAdrianDomisetal.2012, author = {Sommer, Ulrich and Adrian, Rita and Domis, Lisette Nicole de Senerpont and Elser, James J. and Gaedke, Ursula and Ibelings, Bas and Jeppesen, Erik and Lurling, Miquel and Molinero, Juan Carlos and Mooij, Wolf M. and van Donk, Ellen and Winder, Monika}, title = {Beyond the Plankton Ecology Group (PEG) Model mechanisms driving plankton succession}, series = {Annual review of ecology, evolution, and systematics}, volume = {43}, journal = {Annual review of ecology, evolution, and systematics}, number = {2-4}, editor = {Futuyma, DJ}, publisher = {Annual Reviews}, address = {Palo Alto}, isbn = {978-0-8243-1443-9}, issn = {1543-592X}, doi = {10.1146/annurev-ecolsys-110411-160251}, pages = {429 -- 448}, year = {2012}, abstract = {The seasonal succession of plankton is an annually repeated process of community assembly during which all major external factors and internal interactions shaping communities can be studied. A quarter of a century ago, the state of this understanding was described by the verbal plankton ecology group (PEG) model. It emphasized the role of physical factors, grazing and nutrient limitation for phytoplankton, and the role of food limitation and fish predation for zooplankton. Although originally targeted at lake ecosystems, it was also adopted by marine plankton ecologists. Since then, a suite of ecological interactions previously underestimated in importance have become research foci: overwintering of key organisms, the microbial food web, parasitism, and food quality as a limiting factor and an extended role of higher order predators. A review of the impact of these novel interactions on plankton seasonal succession reveals limited effects on gross seasonal biomass patterns, but strong effects on species replacements.}, language = {en} } @misc{RevereyGrossartPremkeetal.2016, author = {Reverey, Florian and Großart, Hans-Peter and Premke, Katrin and Lischeid, Gunnar}, title = {Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {775}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-016-2715-9}, pages = {1 -- 20}, year = {2016}, abstract = {Kettle holes as a specific group of isolated, small lentic freshwater systems (LFS) often are (i) hot spots of biogeochemical cycling and (ii) exposed to frequent sediment desiccation and rewetting. Their ecological functioning is greatly determined by immanent carbon and nutrient transformations. The objective of this review is to elucidate effects of a changing hydrological regime (i.e., dry-wet cycles) on carbon and nutrient cycling in kettle hole sediments. Generally, dry-wet cycles have the potential to increase C and N losses as well as P availability. However, their duration and frequency are important controlling factors regarding direction and intensity of biogeochemical and microbiological responses. To evaluate drought impacts on sediment carbon and nutrient cycling in detail requires the context of the LFS hydrological history. For example, frequent drought events induce physiological adaptation of exposed microbial communities and thus flatten metabolic responses, whereas rare events provoke unbalanced, strong microbial responses. Different potential of microbial resilience to drought stress can irretrievably change microbial communities and functional guilds, gearing cascades of functional responses. Hence, dry-wet events can shift the biogeochemical cycling of organic matter and nutrients to a new equilibrium, thus affecting the dynamic balance between carbon burial and mineralization in kettle holes.}, language = {en} } @misc{TarasovaMerzKissetal.2019, author = {Tarasova, Larisa and Merz, Ralf and Kiss, Andrea and Basso, Stefano and Bl{\"o}chl, G{\"u}nter and Merz, Bruno and Viglione, Alberto and Pl{\"o}tner, Stefan and Guse, Bj{\"o}rn and Schumann, Andreas and Fischer, Svenja and Ahrens, Bodo and Anwar, Faizan and B{\´a}rdossy, Andr{\´a}s and B{\"u}hler, Philipp and Haberlandt, Uwe and Kreibich, Heidi and Krug, Amelie and Lun, David and M{\"u}ller-Thomy, Hannes and Pidoto, Ross and Primo, Cristina and Seidel, Jochen and Vorogushyn, Sergiy and Wietzke, Luzie}, title = {Causative classification of river flood events}, series = {Wiley Interdisciplinary Reviews : Water}, volume = {6}, journal = {Wiley Interdisciplinary Reviews : Water}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {2049-1948}, doi = {10.1002/wat2.1353}, pages = {23}, year = {2019}, abstract = {A wide variety of processes controls the time of occurrence, duration, extent, and severity of river floods. Classifying flood events by their causative processes may assist in enhancing the accuracy of local and regional flood frequency estimates and support the detection and interpretation of any changes in flood occurrence and magnitudes. This paper provides a critical review of existing causative classifications of instrumental and preinstrumental series of flood events, discusses their validity and applications, and identifies opportunities for moving toward more comprehensive approaches. So far no unified definition of causative mechanisms of flood events exists. Existing frameworks for classification of instrumental and preinstrumental series of flood events adopt different perspectives: hydroclimatic (large-scale circulation patterns and atmospheric state at the time of the event), hydrological (catchment scale precipitation patterns and antecedent catchment state), and hydrograph-based (indirectly considering generating mechanisms through their effects on hydrograph characteristics). All of these approaches intend to capture the flood generating mechanisms and are useful for characterizing the flood processes at various spatial and temporal scales. However, uncertainty analyses with respect to indicators, classification methods, and data to assess the robustness of the classification are rarely performed which limits the transferability across different geographic regions. It is argued that more rigorous testing is needed. There are opportunities for extending classification methods to include indicators of space-time dynamics of rainfall, antecedent wetness, and routing effects, which will make the classification schemes even more useful for understanding and estimating floods. This article is categorized under: Science of Water > Water Extremes Science of Water > Hydrological Processes Science of Water > Methods}, language = {en} } @misc{MacaulaySobelMikolaichuketal.2014, author = {Macaulay, Euan A. and Sobel, Edward and Mikolaichuk, Alexander and Kohn, Barry and Stuart, Finlay M.}, title = {Cenozoic deformation and exhumation history of the Central Kyrgyz Tien Shan}, series = {Tectonics}, volume = {33}, journal = {Tectonics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2013TC003376}, pages = {135 -- 165}, year = {2014}, abstract = {New low-temperature thermochronological data from 80 samples in eastern Kyrgyzstan are combined with previously published data from 61 samples to constrain exhumation in a number of mountain ranges in the Central Kyrgyz Tien Shan. All sampled ranges are found to have a broadly consistent Cenozoic exhumation history, characterized by initially low cooling rates (<1 degrees C/Myr) followed by a series of increases in exhumation that occurred diachronously across the region in the late Cenozoic that are interpreted to record the onset of deformation in different mountain ranges. Combined with geological estimates for the onset of proximal deformation, our data suggest that the Central Kyrgyz Tien Shan started deforming in the late Oligocene-early Miocene, leading to the development of several, widely spaced mountain ranges separated by large intermontane basins. Subsequently, more ranges have been constructed in response to significant shortening increases across the Central Kyrgyz Tien Shan, notably in the late Miocene. The order of range construction is interpreted to reflect variations in the susceptibility of inherited structures to reactivation. Reactivated structures are also shown to have significance along strike variations in fault vergence and displacement, which have influenced the development and growth of individual mountain ranges. Moreover, the timing of deformation allows the former extent of many intermontane basins that have since been partitioned to be inferred; this can be linked to the highly time-transgressive onset of late Cenozoic coarse clastic sedimentation.}, language = {en} } @misc{BarboliniWoutersenDupontNivetetal.2020, author = {Barbolini, Natasha and Woutersen, Amber and Dupont-Nivet, Guillaume and Silvestro, Daniele and Tardif-Becquet, Delphine and Coster, Pauline M. C. and Meijer, Niels and Chang, Cun and Zhang, Hou-Xi and Licht, Alexis and Rydin, Catarina and Koutsodendris, Andreas and Han, Fang and Rohrmann, Alexander and Liu, Xiang-Jun and Zhang, Y. and Donnadieu, Yannick and Fluteau, Frederic and Ladant, Jean-Baptiste and Le Hir, Guillaume and Hoorn, M. Carina}, title = {Cenozoic evolution of the steppe-desert biome in Central Asia}, series = {Science Advances}, volume = {6}, journal = {Science Advances}, number = {41}, publisher = {American Association for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.abb8227}, pages = {16}, year = {2020}, abstract = {The origins and development of the arid and highly seasonal steppe-desert biome in Central Asia, the largest of its kind in the world, remain largely unconstrained by existing records. It is unclear how Cenozoic climatic, geological, and biological forces, acting at diverse spatial and temporal scales, shaped Central Asian ecosystems through time. Our synthesis shows that the Central Asian steppe-desert has existed since at least Eocene times but experienced no less than two regime shifts, one at the Eocene-Oligocene Transition and one in the mid-Miocene. These shifts separated three successive "stable states," each characterized by unique floral and faunal structures. Past responses to disturbance in the Asian steppe-desert imply that modern ecosystems are unlikely to recover their present structures and diversity if forced into a new regime. This is of concern for Asian steppes today, which are being modified for human use and lost to desertification at unprecedented rates.}, language = {en} } @misc{SernoWincklerAndersonetal.2017, author = {Serno, Sascha and Winckler, Gisela and Anderson, Robert F. and Jaccard, Samuel L. and Kienast, Stephanie S. and Haug, Gerald H.}, title = {Change in dust seasonality as the primary driver for orbital-scale dust storm variability in East Asia}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL072345}, pages = {3796 -- 3805}, year = {2017}, abstract = {Glacial periods are recognized to be dustier than interglacials, but the conditions leading to greater dust mobilization are poorly defined. Here we present a new high-resolution dust record based on Th-230-normalized He-4 flux from Ocean Drilling Program site 882 in the Subarctic North Pacific covering the last 170,000years. By analogy with modern relationships, we infer the mechanisms controlling orbital-scale dust storm variability in East Asia. We propose that orbital-scale dust flux variability is the result of an expansion of the dust season into summer, in addition to more intense dust storms during spring and fall. The primary drivers influencing dust flux include summer insolation at subarctic latitudes and variable Siberian alpine glaciation, which together control the cold air reservoir in Siberia. Changes in the extent of the Northern Hemisphere ice sheets may be a secondary control.}, language = {en} } @misc{PedojaHussonJohnsonetal.2014, author = {Pedoja, Kevin and Husson, Laurent and Johnson, Markes E. and Melnick, Daniel and Witt, Cesar and Pochat, Stephane and Nexer, Maelle and Delcaillau, Bernard and Pinegina, Tatiana and Poprawski, Yohann and Authemayou, Christine and Elliot, Mary and Regard, Vincent and Garestier, Franck}, title = {Coastal staircase sequences reflecting sea-level oscillations and tectonic uplift during the Quaternary and Neogene}, series = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, volume = {132}, journal = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2014.01.007}, pages = {13 -- 38}, year = {2014}, abstract = {Many coasts feature sequences of Quaternary and Neogene shorelines that are shaped by a combination of sea-level oscillations and tectonics. We compiled a global synthesis of sea-level changes for the following highstands: MIS 1, MIS 3, MIS 5e and MIS 11. Also, we date the apparent onset of sequences of paleoshorelines either from published data or tentatively extrapolating an age for the uppermost, purported oldest shoreline in each sequence. Including the most documented MIS 5e benchmark, we identify 926 sequences out of which 185 also feature Holocene shorelines. Six areas are identified where elevations of the MIS 3 shorelines are known, and 31 feature elevation data for MIS 11 shorelines. Genetic relationships to regional geodynamics are further explored based on the elevations of the MIS 5e benchmark. Mean apparent uplift rates range from 0.01 0.01 mm/yr (hotspots) to 1.47 0.08 mm/yr (continental collision). Passive margins appear as ubiquitously uplifting, while tectonic segmentation is more important on active margins. From the literature and our extrapolations, we infer ages for the onset of formation for -180 coastal sequences. Sea level fingerprinting on coastal sequences started at least during mid Miocene and locally as early as Eocene. Whether due to the changes in the bulk volume of seawater or to the temporal variations in the shape of ocean basins, estimates of eustasy fail to explain the magnitude of the apparent sea level drop. Thus, vertical ground motion is invoked, and we interpret the longlasting development of those paleoshore sequences as the imprint of glacial cycles on globally uplifted margins in response to continental compression. The geomorphological expression of the sequences matches the amplitude and frequency of glacial cyclicity. From middle Pleistocene to present-day, moderately fast (100,000 yrs) oscillating sea levels favor the development of well identified strandlines that are distinct from one another. Pliocene and Lower Pleistocene strandlines associated with faster cyclicity (40,000 yrs) are more compact and easily merge into rasas, whereas older Cenozoic low-frequency eustatic changes generally led to widespread flat-lying coastal plains.}, language = {en} } @misc{KonradSchmolkeHalama2014, author = {Konrad-Schmolke, Matthias and Halama, Ralf}, title = {Combined thermodynamic-geochemical modeling in metamorphic geology: Boron as tracer of fluid-rock interaction}, series = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, volume = {208}, journal = {Lithos : an international journal of mineralogy, petrology, and geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0024-4937}, doi = {10.1016/j.lithos.2014.09.021}, pages = {393 -- 414}, year = {2014}, abstract = {Quantitative geochemical modeling is today applied in a variety of geological environments from the petrogenesis of igneous rocks to radioactive waste disposal. In addition, the development of thermodynamic databases and computer programs to calculate equilibrium phase diagrams has greatly advanced our ability to model geodynamic processes. Combined with experimental data on elemental partitioning and isotopic fractionation, thermodynamic forward modeling unfolds enormous capacities that are far from exhausted. In metamorphic petrology the combination of thermodynamic and trace element forward modeling can be used to study and to quantify processes at spatial scales from mu m to km. The thermodynamic forward models utilize Gibbs energy minimization to quantify mineralogical changes along a reaction path of a chemically open fluid/rock system. These results are combined with mass balanced trace element calculations to determine the trace element distribution between rock and melt/fluid during the metamorphic evolution. Thus, effects of mineral reactions, fluid-rock interaction and element transport in metamorphic rocks on the trace element and isotopic composition of minerals, rocks and percolating fluids or melts can be predicted. Here we illustrate the capacities of combined thermodynamic-geochemical modeling based on two examples relevant to mass transfer during metamorphism. The first example focuses on fluid-rock interaction in and around a blueschist-facies shear zone in felsic gneisses, where fluid-induced mineral reactions and their effects on boron (B) concentrations and isotopic compositions in white mica are modeled. In the second example, fluid release from a subducted slab, the associated transport of B as well as variations in B concentrations and isotopic compositions in liberated fluids and residual rocks are modeled. We compare the modeled results of both examples to geochemical data of natural minerals and rocks and demonstrate that the combination of thermodynamic and geochemical models enables quantification of metamorphic processes and insights into element cycling that would have been unattainable if only one model approach was chosen. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{DormannSchymanskiCabraletal.2012, author = {Dormann, Carsten F. and Schymanski, Stanislaus J. and Cabral, Juliano Sarmento and Chuine, Isabelle and Graham, Catherine and Hartig, Florian and Kearney, Michael and Morin, Xavier and R{\"o}mermann, Christine and Schr{\"o}der-Esselbach, Boris and Singer, Alexander}, title = {Correlation and process in species distribution models: bridging a dichotomy}, series = {Journal of biogeography}, volume = {39}, journal = {Journal of biogeography}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/j.1365-2699.2011.02659.x}, pages = {2119 -- 2131}, year = {2012}, abstract = {Within the field of species distribution modelling an apparent dichotomy exists between process-based and correlative approaches, where the processes are explicit in the former and implicit in the latter. However, these intuitive distinctions can become blurred when comparing species distribution modelling approaches in more detail. In this review article, we contrast the extremes of the correlativeprocess spectrum of species distribution models with respect to core assumptions, model building and selection strategies, validation, uncertainties, common errors and the questions they are most suited to answer. The extremes of such approaches differ clearly in many aspects, such as model building approaches, parameter estimation strategies and transferability. However, they also share strengths and weaknesses. We show that claims of one approach being intrinsically superior to the other are misguided and that they ignore the processcorrelation continuum as well as the domains of questions that each approach is addressing. Nonetheless, the application of process-based approaches to species distribution modelling lags far behind more correlative (process-implicit) methods and more research is required to explore their potential benefits. Critical issues for the employment of species distribution modelling approaches are given, together with a guideline for appropriate usage. We close with challenges for future development of process-explicit species distribution models and how they may complement current approaches to study species distributions.}, language = {en} } @misc{HudsonBotzen2019, author = {Hudson, Paul and Botzen, W. J. Wouter}, title = {Cost-benefit analysis of flood-zoning policies: A review of current practice}, series = {Wiley Interdisciplinary Reviews : Water}, volume = {6}, journal = {Wiley Interdisciplinary Reviews : Water}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {2049-1948}, doi = {10.1002/wat2.1387}, pages = {21}, year = {2019}, abstract = {One commonly proposed method to limit flood risk is land-use or zoning policies which regulates construction in high-risk areas, in order to reduce economic exposure and its vulnerability to flood events. Although such zoning regulations can be effective in limiting trends in flood risk, they also have adverse impacts on society, for instance by limiting local development of areas near the water. In order to judge whether proposed land-use or zoning policies are a net benefit to society, they should be accepted or rejected based on a societal cost-benefit analysis (CBA). However, conducting a CBA of zoning regulation is complex and comprehensive guidelines of how to do such an analysis are lacking. We offer guidelines for good practice. In order to assess the costs and benefits of zoning as a climate change adaption strategy, they should be assessed at a societal level in order to account for public good features of flood risk reduction strategies, and because costs in one area can be benefits in another region. We propose a multistep process: first, determine the spatial extent of the zoning policy and how interconnected the zoned area is to other locations; second, conduct a CBA using monetary costs and benefits estimated from an integrated hydro-economic model to investigate if total benefits exceed total costs; third, conduct a sensitivity analysis regarding the main assumptions; fourth, conduct a multicriteria analysis (MCA) of the normative outcomes of a zoning policy. A desirable policy is preferred in both the CBA and MCA. This article is categorized under: Engineering Water > Planning Water Human Water > Value of Water Science of Water > Water Extremes Human Water > Methods}, language = {en} } @misc{AyllonGrimmAttingeretal.2018, author = {Ayllon, Daniel and Grimm, Volker and Attinger, Sabine and Hauhs, Michael and Simmer, Clemens and Vereecken, Harry and Lischeid, Gunnar}, title = {Cross-disciplinary links in environmental systems science}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {622}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2017.12.007}, pages = {954 -- 973}, year = {2018}, abstract = {Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model inter-comparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. (c) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @misc{SchmidtSachseWalz2016, author = {Schmidt, Katja and Sachse, Rene and Walz, Ariane}, title = {Current role of social benefits in ecosystem service assessments}, series = {Landscape and urban planning : an international journal of landscape ecology, planning and design}, volume = {149}, journal = {Landscape and urban planning : an international journal of landscape ecology, planning and design}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-2046}, doi = {10.1016/j.landurbplan.2016.01.005}, pages = {49 -- 64}, year = {2016}, abstract = {Ecosystem services have a significant impact on human wellbeing. While ecosystem services are frequently represented by monetary values, social values and underlying social benefits remain underexplored. The purpose of this study is to assess whether and how social benefits have been explicitly addressed within socio-economic and socio-cultural ecosystem services research, ultimately allowing a better understanding between ecosystem services and human well-being. In this paper, we reviewed 115 international primary valuation studies and tested four hypotheses associated to the identification of social benefits of ecosystem services using logistic regressions. Tested hypotheses were that (1) social benefits are mostly derived in studies that assess cultural ecosystem services as opposed to other ecosystem service types, (2) there is a pattern of social benefits and certain cultural ecosystem services assessed simultaneously, (3) monetary valuation techniques go beyond expressing monetary values and convey social benefits, and (4) directly addressing stakeholde\&\#341;s views the consideration of social benefits in ecosystem service assessments. Our analysis revealed that (1) a variety of social benefits are valued in studies that assess either of the four ecosystem service types, (2) certain social benefits are likely to co-occur in combination with certain cultural ecosystem services, (3) of the studies that employed monetary valuation techniques, simulated market approaches overlapped most frequently with the assessment of social benefits and (4) studies that directly incorporate stakeholder's views were more likely to also assess social benefits.}, language = {en} } @misc{WongMasonBruneetal.2019, author = {Wong, Kevin and Mason, Emily and Brune, Sascha and East, Madison and Edmonds, Marie and Zahirovic, Sabin}, title = {Deep Carbon Cycling Over the Past 200 Million Years: A Review of Fluxes in Different Tectonic Settings}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00263}, pages = {22}, year = {2019}, language = {en} } @misc{Kallmeyer2011, author = {Kallmeyer, Jens}, title = {Detection and quantification of microbial cells in subsurface sediments}, series = {Advances in applied microbiology}, volume = {76}, journal = {Advances in applied microbiology}, editor = {Laskin, AI and Sariaslani, S and Gadd, GM}, publisher = {Elsevier}, address = {San Diego}, isbn = {978-0-12-387048-3}, issn = {0065-2164}, doi = {10.1016/B978-0-12-387048-3.00003-9}, pages = {79 -- 103}, year = {2011}, abstract = {Quantification of total cell abundance is one of the most fundamental parameters in the exploration of subsurface life. Despite all recent advances in molecular techniques, this parameter is usually determined by fluorescence microscopy. In order to obtain reliable and reproducible results, it is important not just to focus on the actual cell enumeration but also to consider the entire chain of processing. Starting with the retrieval of the sample, over subsampling and sample processing to the final step of fluorescence microscopy, there are many potential sources of contamination that have to be assessed and, if possible, avoided. Because some degree of sample contamination will always occur, it is necessary to employ some form of contamination control. Different tracers are available, each one with its specific advantages and drawbacks. In many cases, the problems arise not after the sample has arrived in a well-equipped laboratory with highly trained personnel, but much earlier at the drill site or in a field camp. In this review, I discuss the different aspects of cell enumeration in subsurface sediment, evaluating every step in the long process chain.}, language = {en} } @misc{MaslinBrierleyMilneretal.2014, author = {Maslin, Mark A. and Brierley, Chris M. and Milner, Alice M. and Shultz, Susanne and Trauth, Martin H. and Wilson, Katy E.}, title = {East African climate pulses and early human evolution}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {101}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.06.012}, pages = {1 -- 17}, year = {2014}, abstract = {Current evidence suggests that all of the major events in hominin evolution have occurred in East Africa. Over the last two decades, there has been intensive work undertaken to understand African palaeoclimate and tectonics in order to put together a coherent picture of how the environment of East Africa has varied in the past. The landscape of East Africa has altered dramatically over the last 10 million years. It has changed from a relatively flat, homogenous region covered with mixed tropical forest, to a varied and heterogeneous environment, with mountains over 4 km high and vegetation ranging from desert to cloud forest. The progressive rifting of East Africa has also generated numerous lake basins, which are highly sensitive to changes in the local precipitation-evaporation regime. There is now evidence that the presence of precession-driven, ephemeral deep-water lakes in East Africa were concurrent with major events in hominin evolution. It seems the unusual geology and climate of East Africa created periods of highly variable local climate, which, it has been suggested could have driven hominin speciation, encephalisation and dispersal out of Africa. One example is the significant hominin speciation and brain expansion event at -1.8 Ma that seems to have been coeval with the occurrence of highly variable, extensive, deep-water lakes. This complex, climatically very variable setting inspired first the variability selection hypothesis, which was then the basis for the pulsed climate variability hypothesis. The newer of the two suggests that the long-term drying trend in East Africa was punctuated by episodes of short, alternating periods of extreme humidity and aridity. Both hypotheses, together with other key theories of climate-evolution linkages, are discussed in this paper. Though useful the actual evolution mechanisms, which led to early hominins are still unclear and continue to be debated. However, it is clear that an understanding of East African lakes and their palaeoclimate history is required to understand the context within which humans evolved and eventually left East Africa. (C) 2014 The Authors. Published by Elsevier Ltd.}, language = {en} }