@misc{WienhoeferGermerLindenmaieretal.2009, author = {Wienh{\"o}fer, Jan and Germer, Kai and Lindenmaier, Falk and F{\"a}rber, Arne and Zehe, Erwin}, title = {Applied tracers for the observation of subsurface stormflow at the hillslope scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45246}, year = {2009}, abstract = {Rain fall-runoff response in temperate humid headwater catchments is mainly controlled by hydrolo gical processes at the hillslope scale. Applied tracer experiments with fluore scent dye and salt tracers are well known tools in groundwater studies at the large scale and vadose zone studies at the plot scale, where they provide a means to characterise subsurface flow. We extend this approach to the hillslope scale to investigate saturated and unsaturated flow path s concertedly at a forested hill slope in the Austrian Alps. Dye staining experiments at the plot scale revealed that crack s and soil pipe s function as preferential flow path s in the fine-textured soils of the study area, and these preferenti al flow structures were active in fast subsurface transport of tracers at the hillslope scale. Breakthrough curves obtained under steady flow conditions could be fitted well to a one-dimensional convection-dispersion model. Under natural rain fall a positive correlation of tracer concentrations to the transient flows was observed. The results of this study demon strate qualitative and quantitative effects of preferential flow feature s on subsurface stormflow in a temperate humid headwater catchment. It turn s out that , at the hill slope scale, the interaction s of structures and processes are intrinsically complex, which implies that attempts to model such a hillslope satisfactorily require detailed investigation s of effective structures and parameters at the scale of interest.}, language = {en} } @article{WienhoeferLindenmaierZehe2011, author = {Wienh{\"o}fer, Jan and Lindenmaier, Falk and Zehe, Erwin}, title = {Challenges in understanding the hydrologic controls on the mobility of slow-moving landslides}, series = {Vadose zone journal}, volume = {10}, journal = {Vadose zone journal}, number = {2}, publisher = {Soil Science Society of America}, address = {Madison}, issn = {1539-1663}, doi = {10.2136/vzj2009.0182}, pages = {496 -- 511}, year = {2011}, abstract = {Slow-moving landslides are a wide-spread type of active mass movement, can cause severe damages to infrastructure, and may be a precursor of sudden catastrophic slope failures. Pore-water pressure is commonly regarded as the most important among a number of possible factors controlling landslide velocity. We used high-resolution monitoring data to explore the relations of landslide mobility and hydrologic processes at the Heumoser landslide in Austria, which is characterized by continuous slow movement along a shear zone. Movement rates showed a seasonality that was associated with elevated pore-water pressures. Pore pressure monitoring revealed a system of confined and separated aquifers with differing dynamics. Analysis of a simple infinite slope mobility model showed that small variations in parameters, along with measured pore pressure dynamics, provided a perfect match to our observations. Modeling showed a stabilizing effect of snow cover due to the additional load. This finding was supported by a multiple regression model, which further suggested that effective pore pressures at the slip surface were partially differing from the borehole observations and were related to preferential infiltration and subsurface flow in adjacent areas. It appears that in a setting like the Heumoser landslide, hydrologic processes delicately influence slope mobility through their control on pore pressure dynamics and the weight of the landslide body, which challenges observation and modeling. Moreover, it appears that their simplicity, and especially their high sensitivity to parameter variations, limits the conclusions that can be drawn from infinite slope models.}, language = {en} } @article{WienhoeferLindenmaierIhringeretal.2009, author = {Wienh{\"o}fer, Jan and Lindenmaier, Falk and Ihringer, J{\"u}rgen and Zehe, Erwin}, title = {Characterization of soil hydraulic properties on a creeping Alpine slope}, isbn = {978-1-901502-89-3}, year = {2009}, language = {en} } @phdthesis{Wienhoefer2014, author = {Wienh{\"o}fer, Jan}, title = {On the role of structure-process interactions in controlling terrestrial systems : an exemplare of hillslope hydrology and a slow-moving landslide}, address = {Potsdam}, pages = {135 S.}, year = {2014}, language = {en} } @article{LoritzHasslerJackischetal.2017, author = {Loritz, Ralf and Hassler, Sibylle K. and Jackisch, Conrad and Allroggen, Niklas and van Schaik, Loes and Wienh{\"o}fer, Jan and Zehe, Erwin}, title = {Picturing and modeling catchments by representative hillslopes}, series = {Hydrology and earth system sciences : HESS}, volume = {21}, journal = {Hydrology and earth system sciences : HESS}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-21-1225-2017}, pages = {1225 -- 1249}, year = {2017}, abstract = {This study explores the suitability of a single hillslope as a parsimonious representation of a catchment in a physically based model. We test this hypothesis by picturing two distinctly different catchments in perceptual models and translating these pictures into parametric setups of 2-D physically based hillslope models. The model parametrizations are based on a comprehensive field data set, expert knowledge and process-based reasoning. Evaluation against streamflow data highlights that both models predicted the annual pattern of streamflow generation as well as the hydrographs acceptably. However, a look beyond performance measures revealed deficiencies in streamflow simulations during the summer season and during individual rainfall-runoff events as well as a mismatch between observed and simulated soil water dynamics. Some of these shortcomings can be related to our perception of the systems and to the chosen hydrological model, while others point to limitations of the representative hillslope concept itself. Nevertheless, our results confirm that representative hillslope models are a suitable tool to assess the importance of different data sources as well as to challenge our perception of the dominant hydrological processes we want to represent therein. Consequently, these models are a promising step forward in the search for the optimal representation of catchments in physically based models.}, language = {en} } @misc{LoritzHasslerJackischetal.2017, author = {Loritz, Ralf and Hassler, Sibylle K. and Jackisch, Conrad and Allroggen, Niklas and van Schaik, Loes and Wienh{\"o}fer, Jan and Zehe, Erwin}, title = {Picturing and modeling catchments by representative hillslopes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {635}, doi = {10.25932/publishup-41908}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419082}, pages = {1225 -- 1249}, year = {2017}, abstract = {This study explores the suitability of a single hillslope as a parsimonious representation of a catchment in a physically based model. We test this hypothesis by picturing two distinctly different catchments in perceptual models and translating these pictures into parametric setups of 2-D physically based hillslope models. The model parametrizations are based on a comprehensive field data set, expert knowledge and process-based reasoning. Evaluation against streamflow data highlights that both models predicted the annual pattern of streamflow generation as well as the hydrographs acceptably. However, a look beyond performance measures revealed deficiencies in streamflow simulations during the summer season and during individual rainfall-runoff events as well as a mismatch between observed and simulated soil water dynamics. Some of these shortcomings can be related to our perception of the systems and to the chosen hydrological model, while others point to limitations of the representative hillslope concept itself. Nevertheless, our results confirm that representative hillslope models are a suitable tool to assess the importance of different data sources as well as to challenge our perception of the dominant hydrological processes we want to represent therein. Consequently, these models are a promising step forward in the search for the optimal representation of catchments in physically based models.}, language = {en} } @article{WienhoeferLindenmaierZehe2009, author = {Wienh{\"o}fer, Jan and Lindenmaier, Falk and Zehe, Erwin}, title = {Temporal variability of a slow-moving landslide : the Heum{\"o}ser Hang case study in Vorarlberg, Austria}, isbn = {2-9518317-1-4}, year = {2009}, language = {en} }