@book{RosenblumKurths1995, author = {Rosenblum, Michael and Kurths, J{\"u}rgen}, title = {A model of neural control of heart rate}, series = {Preprint NLD}, volume = {12}, journal = {Preprint NLD}, publisher = {Univ.}, address = {Potsdam}, pages = {22 S.}, year = {1995}, language = {en} } @article{OzturkMalikCheungetal.2019, author = {Ozturk, Ugur and Malik, Nishant and Cheung, Kevin and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {A network-based comparative study of extreme tropical and frontal storm rainfall over Japan}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {53}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {1-2}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-018-4597-1}, pages = {521 -- 532}, year = {2019}, abstract = {Frequent and intense rainfall events demand innovative techniques to better predict the extreme rainfall dynamics. This task requires essentially the assessment of the basic types of atmospheric processes that trigger extreme rainfall, and then to examine the differences between those processes, which may help to identify key patterns to improve predictive algorithms. We employ tools from network theory to compare the spatial features of extreme rainfall over the Japanese archipelago and surrounding areas caused by two atmospheric processes: the Baiu front, which occurs mainly in June and July (JJ), and the tropical storms from August to November (ASON). We infer from complex networks of satellite-derived rainfall data, which are based on the nonlinear correlation measure of event synchronization. We compare the spatial scales involved in both systems and identify different regions which receive rainfall due to the large spatial scale of the Baiu and tropical storm systems. We observed that the spatial scales involved in the Baiu driven rainfall extremes, including the synoptic processes behind the frontal development, are larger than tropical storms, which even have long tracks during extratropical transitions. We further delineate regions of coherent rainfall during the two seasons based on network communities, identifying the horizontal (east-west) rainfall bands during JJ over the Japanese archipelago, while during ASON these bands align with the island arc of Japan.}, language = {en} } @article{GoswamiShekatkarRheinwaltetal.2015, author = {Goswami, Bedartha and Shekatkar, Snehal M. and Rheinwalt, Aljoscha and Ambika, G. and Kurths, J{\"u}rgen}, title = {A random interacting network model for complex networks}, series = {Scientific reports}, volume = {5}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep18183}, pages = {10}, year = {2015}, abstract = {We propose a RAndom Interacting Network (RAIN) model to study the interactions between a pair of complex networks. The model involves two major steps: (i) the selection of a pair of nodes, one from each network, based on intra-network node-based characteristics, and (ii) the placement of a link between selected nodes based on the similarity of their relative importance in their respective networks. Node selection is based on a selection fitness function and node linkage is based on a linkage probability defined on the linkage scores of nodes. The model allows us to relate within-network characteristics to between-network structure. We apply the model to the interaction between the USA and Schengen airline transportation networks (ATNs). Our results indicate that two mechanisms: degree-based preferential node selection and degree-assortative link placement are necessary to replicate the observed inter-network degree distributions as well as the observed inter-network assortativity. The RAIN model offers the possibility to test multiple hypotheses regarding the mechanisms underlying network interactions. It can also incorporate complex interaction topologies. Furthermore, the framework of the RAIN model is general and can be potentially adapted to various real-world complex systems.}, language = {en} } @article{PereiraBaptistaReyesetal.2009, author = {Pereira, Tiago and Baptista, Murilo da Silva and Reyes, Marcelo B. and Caldas, Ibere Luiz and Sartorelli, Jos{\´e} Carlos and Kurths, J{\"u}rgen}, title = {A scenario for torus T-2 destruction via a global bifurcation}, issn = {0960-0779}, doi = {10.1016/j.chaos.2007.06.115}, year = {2009}, abstract = {We show a scenario of a two-frequeney torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T-2 with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type- if intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws.}, language = {en} } @misc{GoswamiBoersRheinwaltetal.2018, author = {Goswami, Bedartha and Boers, Niklas and Rheinwalt, Aljoscha and Marwan, Norbert and Heitzig, Jobst and Breitenbach, Sebastian Franz Martin and Kurths, J{\"u}rgen}, title = {Abrupt transitions in time series with uncertainties}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {576}, issn = {1866-8372}, doi = {10.25932/publishup-42311}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423111}, pages = {10}, year = {2018}, abstract = {Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Nino-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon.}, language = {en} } @article{GoswamiBoersRheinwaltetal.2018, author = {Goswami, Bedartha and Boers, Niklas and Rheinwalt, Aljoscha and Marwan, Norbert and Heitzig, Jobst and Breitenbach, Sebastian Franz Martin and Kurths, J{\"u}rgen}, title = {Abrupt transitions in time series with uncertainties}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-017-02456-6}, pages = {10}, year = {2018}, abstract = {Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Ni{\~n}o-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon.}, language = {en} } @article{ZaikinKurths2000, author = {Zaikin, Alexei A. and Kurths, J{\"u}rgen}, title = {Additive noise and noise-induced nonequilibrium phase transitions}, isbn = {1-563-96826-6}, year = {2000}, language = {en} } @article{ZaikinKurths2001, author = {Zaikin, Alexei A. and Kurths, J{\"u}rgen}, title = {Additive noise in noise-induced nonequilibrium transitions}, issn = {1054-1500}, year = {2001}, language = {en} } @article{PortaDiRienzoWesseletal.2009, author = {Porta, Alberto and Di Rienzo, Marco and Wessel, Niels and Kurths, J{\"u}rgen}, title = {Addressing the complexity of cardiovascular regulation}, issn = {1364-503X}, doi = {10.1098/rsta.2008.0292}, year = {2009}, language = {en} } @article{ParkRosenblumKurthsetal.1999, author = {Park, Eun Hyoung and Rosenblum, Michael and Kurths, J{\"u}rgen and Zaks, Michael A.}, title = {Alternating locking ratios in imperfect phase synchronization}, year = {1999}, language = {en} } @article{KolodnerAbelKurthsetal.1999, author = {Kolodner, P. and Abel, Markus and Kurths, J{\"u}rgen and Voss, Henning U.}, title = {Amplitude equations from spatiotemporal binary-fluid convection data}, year = {1999}, language = {en} } @article{AllefeldKurths2004, author = {Allefeld, Carsten and Kurths, J{\"u}rgen}, title = {An approach to multivariate phase synchronization analysis and its application to event-related potentials}, issn = {0218-1274}, year = {2004}, abstract = {A method for the multivariate analysis of statistical phase synchronization phenomena in empirical data is presented. A first statistical approach is complemented by a stochastic dynamic model, to result in a data analysis algorithm which can in a specific sense be shown to be a generic multivariate statistical phase synchronization analysis. The method is applied to EEG data from a psychological experiment, obtaining results which indicate the relevance of this method in the context of cognitive science as well as in other fields}, language = {en} } @misc{AllefeldKurths2004, author = {Allefeld, Carsten and Kurths, J{\"u}rgen}, title = {An approach to multivariate phase synchronization analysis and its application to event-related potentials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-20106}, year = {2004}, abstract = {A method for the multivariate analysis of statistical phase synchronization phenomena in empirical data is presented. A first statistical approach is complemented by a stochastic dynamic model, to result in a data analysis algorithm which can in a specific sense be shown to be a generic multivariate statistical phase synchronization analysis. The method is applied to EEG data from a psychological experiment, obtaining results which indicate the relevance of this method in the context of cognitive science as well as in other fields.}, language = {en} } @misc{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52586}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525863}, pages = {12}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @article{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Environmental Research Letters}, volume = {15}, journal = {Environmental Research Letters}, number = {9}, publisher = {IOP - Institute of Physics Publishing}, address = {Bristol}, pages = {10}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @article{ZakharovaKurthsVadivasovaetal.2011, author = {Zakharova, Anna and Kurths, J{\"u}rgen and Vadivasova, Tatyana and Koseska, Aneta}, title = {Analysing dynamical behavior of cellular networks via stochastic bifurcations}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0019696}, pages = {12}, year = {2011}, abstract = {The dynamical structure of genetic networks determines the occurrence of various biological mechanisms, such as cellular differentiation. However, the question of how cellular diversity evolves in relation to the inherent stochasticity and intercellular communication remains still to be understood. Here, we define a concept of stochastic bifurcations suitable to investigate the dynamical structure of genetic networks, and show that under stochastic influence, the expression of given proteins of interest is defined via the probability distribution of the phase variable, representing one of the genes constituting the system. Moreover, we show that under changing stochastic conditions, the probabilities of expressing certain concentration values are different, leading to different functionality of the cells, and thus to differentiation of the cells in the various types.}, language = {en} } @article{PavlovAnisimovSemyachkinaGlushkovskayaetal.2009, author = {Pavlov, Alexey N. and Anisimov, A. A. and Semyachkina-Glushkovskaya, Oxana V. and Matasova, E. G. and Kurths, J{\"u}rgen}, title = {Analysis of blood pressure dynamics in male and female rats using the continuous wavelet transform}, issn = {0967-3334}, doi = {10.1088/0967-3334/30/7/013}, year = {2009}, abstract = {We study gender-related particularities in cardiovascular responses to stress and nitric oxide (NO) deficiency in rats using HR, mean arterial pressure (MAP) and a proposed wavelet-based approach. Blood pressure dynamics is analyzed: (1) under control conditions, (2) during immobilization stress and recovery and (3) during nitric oxide blockade by N-G-nitro-L-arginine-methyl ester (L-NAME). We show that cardiovascular sensitivity to stress and NO deficiency depends upon gender. Actually, in females the chronotropic effect of stress is more pronounced, while the pressor effect is weakened compared with males. We conclude that females demonstrate more favorable patterns of cardiovascular responses to stress and more effective NO control of cardiovascular activity than males.}, language = {en} } @article{KomalapriyaRomanoBlascoThieletal.2009, author = {Komalapriya, Chandrasekaran and Romano Blasco, Maria Carmen and Thiel, Marco and Schwarz, Udo and Kurths, J{\"u}rgen and Simonotto, Jennifer and Furman, Michael and Ditto, William L. and Carney, Paul R.}, title = {Analysis of high-resulution microelectrode EEG recordings in an animal model of spontaneous limbic seizures}, issn = {0218-1274}, doi = {10.1142/S0218127409023226}, year = {2009}, language = {en} } @article{SchwarzBenzKurthsetal.1993, author = {Schwarz, udo and Benz, Arnold O. and Kurths, J{\"u}rgen and Witt, Annette}, title = {Analysis of solar spike events by means of symbolic dynamics methods}, issn = {004-6361}, year = {1993}, abstract = {Using quantities of symbolic dynamics, such as mutual information, Shannon information and algorithmic complexity, we have searched for interrelations of spikes emitted simultaneously at different frequencies during the impulsive phase of a flare event. As the spikes are related to the flare energy release and are interpreted as emissions originating at different sites having different magnetic field strengths, any relation in frequency is interpretated as a relation in space. This approach is appropriate to characterize such spatio-temporal patterns, whereas the popular estimate of fractal dimensions can be applied to low-dimensional systems only. Depending on the energy release and emission processes, two types of fragmentation are possible: a scenario of global organization (spikes are emitted in a succession of similar events by the same system) or a scenario of local organization (many systems triggered by an initial event). Mutual information which is a generalization of correlation indicates a relation in frequency beyond the bandwidth of individual spikes. The scans in the spectrograms with large mutual information also show a low level of Shannon information and algorithmic complexity, indicating that the simultaneous appearance of spikes at other frequencies is not a completely stochastic phenomenon (white noise). It may be caused by a nonlinear deterministic system or by a Markov process. By means of mutual information we find a memory over frequency intervals up to 60 MHz. Shannon information and algorithmic complexity concern the mbox{whole} frequency region, i.e. the global source region. A global organization is also apparent in quasi-periodic changes of the Shannon information and algorithmic complexity in the range of 2 - 8 seconds. The finding is compatible with a scenario of local organization in which the information of one event spreads spatially and triggers further events at different places. The region is not an ensemble of independently flashing sources, each representing a system that cascades in energy after an initial trigger. On the contrary, there is a causal connection between the sources at any time. The analysis of the four spike events suggests that the structure in frequency is not stochastic but a process in which spikes at nearby locations are simultaneously triggered by a common exciter.}, language = {en} } @article{MalikBookhagenMarwanetal.2012, author = {Malik, Nishant and Bookhagen, Bodo and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Analysis of spatial and temporal extreme monsoonal rainfall over South Asia using complex networks}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {39}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {3-4}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-011-1156-4}, pages = {971 -- 987}, year = {2012}, abstract = {We present a detailed analysis of summer monsoon rainfall over the Indian peninsular using nonlinear spatial correlations. This analysis is carried out employing the tools of complex networks and a measure of nonlinear correlation for point processes such as rainfall, called event synchronization. This study provides valuable insights into the spatial organization, scales, and structure of the 90th and 94th percentile rainfall events during the Indian summer monsoon (June-September). We furthermore analyse the influence of different critical synoptic atmospheric systems and the impact of the steep Himalayan topography on rainfall patterns. The presented method not only helps us in visualising the structure of the extreme-event rainfall fields, but also identifies the water vapor pathways and decadal-scale moisture sinks over the region. Furthermore a simple scheme based on complex networks is presented to decipher the spatial intricacies and temporal evolution of monsoonal rainfall patterns over the last 6 decades.}, language = {en} }