@article{ParedesAmorBooetal.2016, author = {Paredes, E. G. and Amor, M. and Boo, M. and Bruguera, J. D. and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Hybrid terrain rendering based on the external edge primitive}, series = {International journal of geographical information science}, volume = {30}, journal = {International journal of geographical information science}, publisher = {American Chemical Society}, address = {Abingdon}, issn = {1365-8816}, doi = {10.1080/13658816.2015.1105375}, pages = {1095 -- 1116}, year = {2016}, abstract = {Hybrid terrain models combine large regular data sets and high-resolution irregular meshes [triangulated irregular network (TIN)] for topographically and morphologically complex terrain features such as man-made microstructures or cliffs. In this paper, a new method to generate and visualize this kind of 3D hybrid terrain models is presented. This method can integrate geographic data sets from multiple sources without a remeshing process to combine the heterogeneous data of the different models. At the same time, the original data sets are preserved without modification, and, thus, TIN meshes can be easily edited and replaced, among other features. Specifically, our approach is based on the utilization of the external edges of convexified TINs as the fundamental primitive to tessellate the space between both types of meshes. Our proposal is eminently parallel, requires only a minimal preprocessing phase, and minimizes the storage requirements when compared with the previous proposals.}, language = {en} }