@unpublished{FeudelSeehaferGalantietal.1996, author = {Feudel, Fred and Seehafer, Norbert and Galanti, Barak and R{\"u}diger, Sten}, title = {Symmetry breaking bifurcations for the magnetohydrodynamic equations with helical forcing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14317}, year = {1996}, abstract = {We have studied the bifurcations in a three-dimensional incompressible magnetofluid with periodic boundary conditions and an external forcing of the Arnold-Beltrami-Childress (ABC) type. Bifurcation-analysis techniques have been applied to explore the qualitative behavior of solution branches. Due to the symmetry of the forcing, the equations are equivariant with respect to a group of transformations isomorphic to the octahedral group, and we have paid special attention to symmetry-breaking effects. As the Reynolds number is increased, the primary nonmagnetic steady state, the ABC flow, loses its stability to a periodic magnetic state, showing the appearance of a generic dynamo effect; the critical value of the Reynolds number for the instability of the ABC flow is decreased compared to the purely hydrodynamic case. The bifurcating magnetic branch in turn is subject to secondary, symmetry-breaking bifurcations. We have traced periodic and quasi- periodic branches until they end up in chaotic states. In particular detail we have analyzed the subgroup symmetries of the bifurcating periodic branches, which are closely related to the spatial structure of the magnetic field.}, language = {en} } @unpublished{FeudelSeehafer1995, author = {Feudel, Fred and Seehafer, Norbert}, title = {Bifurcations and pattern formation in a 2D Navier-Stokes fluid}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13907}, year = {1995}, abstract = {We report on bifurcation studies for the incompressible Navier-Stokes equations in two space dimensions with periodic boundary conditions and an external forcing of the Kolmogorov type. Fourier representations of velocity and pressure have been used to approximate the original partial differential equations by a finite-dimensional system of ordinary differential equations, which then has been studied by means of bifurcation-analysis techniques. A special route into chaos observed for increasing Reynolds number or strength of the imposed forcing is described. It includes several steady states, traveling waves, modulated traveling waves, periodic and torus solutions, as well as a period-doubling cascade for a torus solution. Lyapunov exponents and Kaplan-Yorke dimensions have been calculated to characterize the chaotic branch. While studying the dynamics of the system in Fourier space, we also have transformed solutions to real space and examined the relation between the different bifurcations in Fourier space and toplogical changes of the streamline portrait. In particular, the time-dependent solutions, such as, e.g., traveling waves, torus, and chaotic solutions, have been characterized by the associated fluid-particle motion (Lagrangian dynamics).}, language = {en} } @unpublished{FeudelSeehafer1994, author = {Feudel, Fred and Seehafer, Norbert}, title = {On the bifurcation phenomena in truncations of the 2D Navier-Stokes equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13390}, year = {1994}, abstract = {We have studied bifurcation phenomena for the incompressable Navier-Stokes equations in two space dimensions with periodic boundary conditions. Fourier representations of velocity and pressure have been used to transform the original partial differential equations into systems of ordinary differential equations (ODE), to which then numerical methods for the qualitative analysis of systems of ODE have been applied, supplemented by the simulative calculation of solutions for selected initial conditions. Invariant sets, notably steady states, have been traced for varying Reynolds number or strength of the imposed forcing, respectively. A complete bifurcation sequence leading to chaos is described in detail, including the calculation of the Lyapunov exponents that characterize the resulting chaotic branch in the bifurcation diagram.}, language = {en} } @unpublished{Festman2013, author = {Festman, Julia}, title = {The complexity-cost factor in bilingualism}, series = {Behavioral and brain sciences : an international journal of current research and theory with open peer commentary}, volume = {36}, journal = {Behavioral and brain sciences : an international journal of current research and theory with open peer commentary}, number = {4}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0140-525X}, doi = {10.1017/S0140525X12002579}, pages = {355 -- 356}, year = {2013}, abstract = {Language processing changes with the knowledge and use of two languages. The advantage of being bilingual comes at the expense of increased processing demands and processing costs. I suggest considering bilingual complexity including these demands and costs. The proposed model claims effortless monolingual processing. By integrating individual and situational variability, the model would lose its idealistic touch, even for monolinguals.}, language = {en} } @unpublished{FedosovTarkhanov2015, author = {Fedosov, Boris and Tarkhanov, Nikolai Nikolaevich}, title = {Deformation quantisation and boundary value problems}, volume = {4}, number = {5}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77150}, pages = {27}, year = {2015}, abstract = {We describe a natural construction of deformation quantisation on a compact symplectic manifold with boundary. On the algebra of quantum observables a trace functional is defined which as usual annihilates the commutators. This gives rise to an index as the trace of the unity element. We formulate the index theorem as a conjecture and examine it by the classical harmonic oscillator.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1999, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A general index formula on tropic manifolds with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25501}, year = {1999}, abstract = {We solve the index problem for general elliptic pseudodifferential operators on toric manifolds with conical points.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1998, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {A remark on the index of symmetric operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25169}, year = {1998}, abstract = {We introduce a natural symmetry condition for a pseudodifferential operator on a manifold with cylindrical ends ensuring that the operator admits a doubling across the boundary. For such operators we prove an explicit index formula containing, apart from the Atiyah-Singer integral, a finite number of residues of the logarithmic derivative of the conormal symbol.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1997, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The index of elliptic operators on manifolds with conical points}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25096}, year = {1997}, abstract = {For general elliptic pseudodifferential operators on manifolds with singular points, we prove an algebraic index formula. In this formula the symbolic contributions from the interior and from the singular points are explicitly singled out. For two-dimensional manifolds, the interior contribution is reduced to the Atiyah-Singer integral over the cosphere bundle while two additional terms arise. The first of the two is one half of the 'eta' invariant associated to the conormal symbol of the operator at singular points. The second term is also completely determined by the conormal symbol. The example of the Cauchy-Riemann operator on the complex plane shows that all the three terms may be non-zero.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1998, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {The index of higher order operators on singular surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25127}, year = {1998}, abstract = {The index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points contains the Atiyah-Singer integral as well as two additional terms. One of the two is the 'eta' invariant defined by the conormal symbol, and the other term is explicitly expressed via the principal and subprincipal symbols of the operator at conical points. In the preceding paper we clarified the meaning of the additional terms for first-order differential operators. The aim of this paper is an explicit description of the contribution of a conical point for higher-order differential operators. We show that changing the origin in the complex plane reduces the entire contribution of the conical point to the shifted 'eta' invariant. In turn this latter is expressed in terms of the monodromy matrix for an ordinary differential equation defined by the conormal symbol.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov1997, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On the index formula for singular surfaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25116}, year = {1997}, abstract = {In the preceding paper we proved an explicit index formula for elliptic pseudodifferential operators on a two-dimensional manifold with conical points. Apart from the Atiyah-Singer integral, it contains two additional terms, one of the two being the 'eta' invariant defined by the conormal symbol. In this paper we clarify the meaning of the additional terms for differential operators.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov2003, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On index theorem for symplectic orbifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26550}, year = {2003}, abstract = {We give an explicit construction of the trace on the algebra of quantum observables on a symplectic orbifold and propose an index formula.}, language = {en} } @unpublished{Fedosov1999, author = {Fedosov, Boris}, title = {Pseudo-differential operators and deformation quantization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25651}, year = {1999}, abstract = {Using the Riemannian connection on a compact manifold X, we show that the algebra of classical pseudo-differential operators on X generates a canonical deformation quantization on the cotangent manifold T*X. The corresponding Abelian connection is calculated explicitly in terms of the of the exponential mapping. We prove also that the index theorem for elliptic operators may be obtained as a consequence of the index theorem for deformation quantization.}, language = {en} } @unpublished{Fedosov1997, author = {Fedosov, Boris}, title = {Non-Abelian reduction in deformation quantization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25101}, year = {1997}, abstract = {We consider a G-invariant star-product algebra A on a symplectic manifold (M,ω) obtained by a canonical construction of deformation quantization. Under assumptions of the classical Marsden-Weinstein theorem we define a reduction of the algebra A with respect to the G-action. The reduced algebra turns out to be isomorphic to a canonical star-product algebra on the reduced phase space B. In other words, we show that the reduction commutes with the canonical G-invariant deformation quantization. A similar statement in the framework of geometric quantization is known as the Guillemin-Sternberg conjecture (by now completely proved).}, language = {en} } @unpublished{Fedosov1998, author = {Fedosov, Boris}, title = {Moduli spaces and deformation quantization in infinite dimensions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25396}, year = {1998}, abstract = {We construct a deformation quantization on an infinite-dimensional symplectic space of regular connections on an SU(2)-bundle over a Riemannian surface of genus g ≥ 2. The construction is based on the normal form thoerem representing the space of connections as a fibration over a finite-dimensional moduli space of flat connections whose fibre is a cotangent bundle of the infinite-dimensional gauge group. We study the reduction with respect to the gauge groupe both for classical and quantum cases and show that our quantization commutes with reduction.}, language = {en} } @unpublished{Fedosov2006, author = {Fedosov, B.}, title = {On a spectral theorem for deformation quantization}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-30161}, year = {2006}, abstract = {We give a construction of an eigenstate for a non-critical level of the Hamiltonian function, and investigate the contribution of Morse critical points to the spectral decomposition. We compare the rigorous result with the series obtained by a perturbation theory. As an example the relation to the spectral asymptotics is discussed.}, language = {en} } @unpublished{FedchenkoTarkhanov2017, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {A Rad{\´o} Theorem for the Porous Medium Equation}, series = {Preprints des Instituts f{\"u}r Mathematik der Universit{\"a}t Potsdam}, volume = {6}, journal = {Preprints des Instituts f{\"u}r Mathematik der Universit{\"a}t Potsdam}, number = {1}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102735}, pages = {12}, year = {2017}, abstract = {We prove that each locally Lipschitz continuous function satisfying the porous medium equation away from the set of its zeroes is actually a weak solution of this equation in the whole domain.}, language = {en} } @unpublished{FedchenkoTarkhanov2014, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {An index formula for Toeplitz operators}, volume = {3}, number = {12}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72499}, pages = {24}, year = {2014}, abstract = {We prove a Fedosov index formula for the index of Toeplitz operators connected with the Hardy space of solutions to an elliptic system of first order partial differential equations in a bounded domain of Euclidean space with infinitely differentiable boundary.}, language = {en} } @unpublished{FedchenkoTarkhanov2013, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {A Class of Toeplitz Operators in Several Variables}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68932}, year = {2013}, abstract = {We introduce the concept of Toeplitz operator associated with the Laplace-Beltrami operator on a compact Riemannian manifold with boundary. We characterise those Toeplitz operators which are Fredholm, thus initiating the index theory.}, language = {en} } @unpublished{FedchenkoTarkhanov2016, author = {Fedchenko, Dmitry and Tarkhanov, Nikolai Nikolaevich}, title = {Boundary value problems for elliptic complexes}, volume = {5}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86705}, pages = {12}, year = {2016}, abstract = {The aim of this paper is to bring together two areas which are of great importance for the study of overdetermined boundary value problems. The first area is homological algebra which is the main tool in constructing the formal theory of overdetermined problems. And the second area is the global calculus of pseudodifferential operators which allows one to develop explicit analysis.}, language = {en} } @unpublished{FangXu2005, author = {Fang, Daoyuan and Xu, Jiang}, title = {Asymptotic behavior of solutions to multidimensional nonisentropic hydrodynamic model for semiconductors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29767}, year = {2005}, abstract = {In this paper, a global existence result of smooth solutions to the multidimen- sional nonisentropic hydrodynamic model for semiconductors is proved, under the assumption that the initial data is a perturbation of the stationary solutions for the thermal equilibrium state. The resulting evolutionary solutions converge to the stationary solutions in time asymptotically exponentially fast.}, language = {en} }