@article{ReindlRauchParthasarathyetal.2014, author = {Reindl, Nicole and Rauch, Thomas and Parthasarathy, M. and Werner, K. and Kruk, J. W. and Hamann, Wolf-Rainer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias}, title = {The rapid evolution of the exciting star of the Stingray nebula}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {565}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201323189}, pages = {14}, year = {2014}, abstract = {Context. SAO 244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims. A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results. We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M-circle dot yr(-1)) = -9.0 to -11.6 and the terminal wind velocity increased from v(infinity) = 1800 km s(-1) to 2800 km s(-1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions. The position of SAO 244567 in the log T-eff-log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO 244567 must be a low-mass star (M < 0.55 M-circle dot). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAD 244567 would be a low-mass (0.354 M-circle dot) helium pre-white dwarf after the common-envelope phase, during which the planetary nebula was ejected.}, language = {en} } @article{RamachandranOskinovaHamann2021, author = {Ramachandran, Varsha and Oskinova, Lidia M. and Hamann, Wolf-Rainer}, title = {Discovery of O stars in the tidal Magellanic Bridge}, series = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO). Section: Galactic structure, stellar clusters and populations}, volume = {646}, journal = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO). Section: Galactic structure, stellar clusters and populations}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202039486}, pages = {16}, year = {2021}, abstract = {The Magellanic Bridge, stretching between the Small and the Large Magellanic Cloud (SMC and LMC), is the nearest tidally stripped intergalactic environment. The Bridge has a significantly low average metallicity of Z less than or similar to 0.1 Z(circle dot). Here we report the first discovery of O-type stars in the Magellanic Bridge. Three massive O stars were identified thanks to the archival spectra obtained by the ESO's Very Large Telescope FLAMES instrument. We analyze the spectra of each star using the Potsdam Wolf-Rayet (PoWR) non-local thermodynamic equilibrium model atmosphere code, which provides the physical parameters, ionizing photon fluxes, and surface abundances. The ages of the newly discovered O stars suggest that star formation in the Bridge is ongoing. Furthermore, the discovery of O stars in the Bridge implies that tidally stripped galactic tails containing low-density but highly dynamical gas are capable of producing massive O stars. The multi-epoch spectra indicate that all three O stars are binaries. Despite their spatial proximity to one another, these O stars are chemically distinct. One of them is a fast-rotating giant with nearly LMC-like abundances. The other two are main-sequence stars that rotate extremely slowly and are strongly metal depleted. We discover the most nitrogen-poor O star known to date. Taking into account the previous analyses of B stars in the Bridge, we interpret the various metal abundances as the signature of a chemically inhomogeneous interstellar medium (ISM), suggesting that the Bridge gas might have accreted during multiple episodes of tidal interaction between the Clouds. Attributing the lowest derived metal content to the primordial gas, the time of the initial formation of the Bridge may date back several billion years. Using the Gaia and Galex color-magnitude diagrams, we roughly estimate the total number of O stars in the Bridge and their total ionizing radiation. Comparing this with the energetics of the diffuse ISM, we find that the contribution of the hot stars to the ionizing radiation field in the Bridge is less than 10\% and conclude that the main sources of ionizing photons are leaks from the LMC and SMC. We estimate a lower limit for the fraction of ionizing radiation that escapes from these two dwarf galaxies.}, language = {en} } @article{RamachandranHamannOskinovaetal.2019, author = {Ramachandran, Varsha and Hamann, Wolf-Rainer and Oskinova, Lidia M. and Gallagher, J. S. and Hainich, Rainer and Shenar, Tomer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Fulmer, Leah M.}, title = {Testing massive star evolution, star formation history, and feedback at low metallicity}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {625}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935365}, pages = {20}, year = {2019}, abstract = {Stars that start their lives with spectral types O and early B are the progenitors of core-collapse supernovae, long gamma-ray bursts, neutron stars, and black holes. These massive stars are the primary sources of stellar feedback in star-forming galaxies. At low metallicities, the properties of massive stars and their evolution are not yet fully explored. Here we report a spectroscopic study of 320 massive stars of spectral types O (23 stars) and B (297 stars) in the Wing of the Small Magellanic Cloud (SMC). The spectra, which we obtained with the ESO Very Large Telescope, were analyzed using state-of-the-art stellar atmosphere models, and the stellar parameters were determined. We find that the stellar winds of our sample stars are generally much weaker than theoretically expected. The stellar rotation rates show broad, tentatively bimodal distributions. The upper Hertzsprung-Russell diagram (HRD) is well populated by the stars of our sample from a specific field in the SMC Wing. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below similar to 30 M-circle dot seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, stars with initially more than similar to 30 M-circle dot appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of massive star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales.}, language = {en} } @article{RamachandranHamannHainichetal.2018, author = {Ramachandran, Varsha and Hamann, Wolf-Rainer and Hainich, Rainer and Oskinova, Lidia M. and Shenar, Tomer and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Gallagher, John S.}, title = {Stellar population of the superbubble N206 in the LMC II. Parameters of the OB and WR stars, and the total massive star feedback}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {615}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201832816}, pages = {72}, year = {2018}, abstract = {Context. Clusters or associations of early-type stars are often associated with a "superbubble" of hot gas. The formation of such superbubbles is caused by the feedback from massive stars. The complex N206 in the Large Magellanic Cloud (LMC) exhibits a superbubble and a rich massive star population. Aims. Our goal is to perform quantitative spectral analyses of all massive stars associated with the N206 superbubble in order to determine their stellar and wind parameters. We compare the superbubble energy budget to the stellar energy input and discuss the star formation history of the region. Results. We present the stellar and wind parameters of the OB stars and the two Wolf-Rayet (WR) binaries in the N206 complex. Twelve percent of the sample show Oe/Be type emission lines, although most of them appear to rotate far below critical. We found eight runaway stars based on their radial velocity. The wind-momentum luminosity relation of our OB sample is consistent with the expectations. The Hertzsprung-Russell diagram (HRD) of the OB stars reveals a large age spread (1-30 Myr), suggesting different episodes of star formation in the complex. The youngest stars are concentrated in the inner part of the complex, while the older OB stars are scattered over outer regions. We derived the present day mass function for the entire N206 complex as well as for the cluster NGC2018. The total ionizing photon flux produced by all massive stars in the N206 complex is Q(0) approximate to 5 x 10(50) s(-1), and the mechanical luminosity of their stellar winds amounts to L-mec = 1.7 x 10(38) erg s(-1). Three very massive Of stars are found to dominate the feedback among 164 OB stars in the sample. The two WR winds alone release about as much mechanical luminosity as the whole OB star sample. The cumulative mechanical feedback from all massive stellar winds is comparable to the combined mechanical energy of the supernova explosions that likely occurred in the complex. Accounting also for the WR wind and supernovae, the mechanical input over the last five Myr is approximate to 2.3 x 10(52) erg. Conclusions. The N206 complex in the LMC has undergone star formation episodes since more than 30 Myr ago. From the spectral analyses of its massive star population, we derive a current star formation rate of 2.2 x 10(-3) M-circle dot yr(-1). From the combined input of mechanical energy from all stellar winds, only a minor fraction is emitted in the form of X-rays. The corresponding input accumulated over a long time also exceeds the current energy content of the complex by more than a factor of five. The morphology of the complex suggests a leakage of hot gas from the superbubble.}, language = {en} } @article{RamachandranHainichHamannetal.2017, author = {Ramachandran, Varsha and Hainich, Rainer and Hamann, Wolf-Rainer and Oskinova, Lidia M. and Shenar, T. and Sander, Andreas Alexander Christoph and Todt, Helge Tobias and Gallagher, John S.}, title = {Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {609}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731093}, pages = {26}, year = {2017}, abstract = {Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims. We aim to estimate stellar and wind parameters of all OB stars in N206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods. We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results. The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. Conclusions. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N206 superbubble as measured from the observed X-ray and H alpha emission.}, language = {en} } @article{PenaHamannRuiz2003, author = {Pena, M. and Hamann, Wolf-Rainer and Ruiz, M. T.}, title = {The LMC planetary nebula N66 revisited. Nebular kinematics and stellar models}, isbn = {1-583-81148-6}, year = {2003}, language = {en} } @article{PenaHamannKoesterkeetal.1997, author = {Pena, M. and Hamann, Wolf-Rainer and Koesterke, Lars and Maza, J. and Mendez, R. H. and Peimbert, M. and Ruiz, M. T. and Torres-Peimbert, S.}, title = {HST spectrophotometric data of the central star of the planetary nebula LMC-N66}, year = {1997}, language = {en} } @article{PenaHamannKoesterkeetal.1997, author = {Pena, M. and Hamann, Wolf-Rainer and Koesterke, Lars and Maza, J. and Mendez, R. H. and Peimbert, M. and Ruiz, M. T. and Torres-Peimbert, S.}, title = {Spectrophotometric data of the central star of the large magellanic cloud planetary nebula N66. Quantitative analysis of its WN type spectrum}, year = {1997}, language = {en} } @article{PenaHamann2003, author = {Pena, M. and Hamann, Wolf-Rainer}, title = {The central star of the planetary nebula LMC-N66 : a massive accreting white dwarf?}, year = {2003}, abstract = {The central star of the PN LMC-N66 showed an impressive outburst in 1993 - 1994, returning to its initial conditions about 8 years later. Its spectrum resembles that of a WN4.5 star, being the only confirmed central star of planetary nebulae showing such a spectral type. Recent analysis for the central star parameters, performed by Hamann et al. (2003) is presented. They have found that the bolometric luminosity increased by a factor larger than 6, during the outburst. We discuss the possible scenarios which have been proposed to explain the exceptional stellar parameters and the outburst mechanism. The stellar characteristics and the morphology and kinematics of the planetary nebula suggest the presence of binary system (massive star with a less massive companion or, a white dwarf accreting matter in a close- binary system). These cases pose the least severe contradictions with observational constraints.}, language = {en} } @article{PenaPeimbertHamannetal.2004, author = {Pena, M and Peimbert, A. and Hamann, Wolf-Rainer and Ruiz, M. T. and Peimbert, M.}, title = {The extraordinary planetary nebula N66 in the LMC}, isbn = {3-12-283174-0}, year = {2004}, abstract = {Morphology of the planetary nebula LMC-N66 (ionized by a [WN] star) indicates that the nebula is a multipolar object with a very narrow waist. It shows several jets, knots and filaments in opposite directions from the central star. A couple of twisted long filaments could be interpreted as due to point-symmetric type ejection. If such is the case, the progenitor would be a binary precessing system. High resolution spectroscopy shows that most of the material is approaching or receding from the star. However the line profiles are very complex, showing several components at different velocities. Our high resolution spectroscopic data show that the different structures (knots, filaments, ...) present different radial velocities spreading from 240 to more than 400 km/s. The system velocity is 300 km/s. There are high velocity knots located to the north of the central star, moving at more than 100 km/s relative to the system velocity.}, language = {en} } @article{PabloRichardsonMoffatetal.2015, author = {Pablo, Herbert and Richardson, Noel D. and Moffat, Anthony F. J. and Corcoran, Michael and Shenar, Tomer and Benvenuto, Omar and Fuller, Jim and Naze, Yael and Hoffman, Jennifer L. and Miroshnichenko, Anatoly and Apellaniz, Jesus Maiz and Evans, Nancy and Eversberg, Thomas and Gayley, Ken and Gull, Ted and Hamaguchi, Kenji and Hamann, Wolf-Rainer and Henrichs, Huib and Hole, Tabetha and Ignace, Richard and Iping, Rosina and Lauer, Jennifer and Leutenegger, Maurice and Lomax, Jamie and Nichols, Joy and Oskinova, Lidia M. and Owocki, Stan and Pollock, Andy and Russell, Christopher M. P. and Waldron, Wayne and Buil, Christian and Garrel, Thierry and Graham, Keith and Heathcote, Bernard and Lemoult, Thierry and Li, Dong and Mauclaire, Benjamin and Potter, Mike and Ribeiro, Jose and Matthews, Jaymie and Cameron, Chris and Guenther, David and Kuschnig, Rainer and Rowe, Jason and Rucinski, Slavek and Sasselov, Dimitar and Weiss, Werner}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. III. Analysis of optical photometric (most) and spectroscopic (ground based) variations}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/134}, pages = {11}, year = {2015}, abstract = {We report on both high-precision photometry from the Microvariability and Oscillations of Stars (MOST) space telescope and ground-based spectroscopy of the triple system delta Ori A, consisting of a binary O9.5II+early-B (Aa1 and Aa2) with P = 5.7 days, and a more distant tertiary (O9 IV P > 400 years). This data was collected in concert with X-ray spectroscopy from the Chandra X-ray Observatory. Thanks to continuous coverage for three weeks, the MOST light curve reveals clear eclipses between Aa1 and Aa2 for the first time in non-phased data. From the spectroscopy, we have a well-constrained radial velocity (RV) curve of Aa1. While we are unable to recover RV variations of the secondary star, we are able to constrain several fundamental parameters of this system and determine an approximate mass of the primary using apsidal motion. We also detected second order modulations at 12 separate frequencies with spacings indicative of tidally influenced oscillations. These spacings have never been seen in a massive binary, making this system one of only a handful of such binaries that show evidence for tidally induced pulsations.}, language = {en} } @article{OskinovaTodtIgnaceetal.2011, author = {Oskinova, Lidia M. and Todt, Helge Tobias and Ignace, Richard and Brown, John C. and Cassinelli, Joseph P. and Hamann, Wolf-Rainer}, title = {Early magnetic B-type stars X-ray emission and wind properties}, series = {Monthly notices of the Royal Astronomical Society}, volume = {416}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2011.19143.x}, pages = {1456 -- 1474}, year = {2011}, abstract = {We present a comprehensive study of X-ray emission by, and wind properties of, massive magnetic early B-type stars. Dedicated XMM-Newton observations were obtained for three early-type B-type stars, xi(1) CMa, V2052 Oph and zeta Cas, with recently discovered magnetic fields. We report the first detection of X-ray emission from V2052 Oph and zeta Cas. The latter is one the softest X-ray sources among the early-type stars, while the former is one of the X-ray faintest. The observations show that the X-ray spectra of our programme stars are quite soft with the bulk of X-ray emitting material having a temperature of about 1 MK. We compile the complete sample of early B-type stars with detected magnetic fields to date and existing X-ray measurements, in order to study whether the X-ray emission can be used as a general proxy for stellar magnetism. We find that the X-ray properties of early massive B-type magnetic stars are diverse, and that hard and strong X-ray emission does not necessarily correlate with the presence of a magnetic field, corroborating similar conclusions reached earlier for the classical chemically peculiar magnetic Bp-Ap stars. We analyse the ultraviolet (UV) spectra of five non-supergiant B stars with magnetic fields (tau Sco, beta Cep, xi(1) CMa, V2052 Oph and zeta Cas) by means of non-local thermodynamic equilibrium (non-LTE) iron-blanketed model atmospheres. The latter are calculated with the Potsdam Wolf-Rayet (PoWR) code, which treats the photosphere as well as the wind, and also accounts for X-rays. With the exception of t Sco, this is the first analysis of these stars by means of stellar wind models. Our models accurately fit the stellar photospheric spectra in the optical and the UV. The parameters of X-ray emission, temperature and flux are included in the model in accordance with observations. We confirm the earlier findings that the filling factors of X-ray emitting material are very high. Our analysis reveals that the magnetic early-type B stars studied here have weak winds with velocities not significantly exceeding upsilon(esc). The mass-loss rates inferred from the analysis of UV lines are significantly lower than predicted by hydrodynamically consistent models. We find that, although the X-rays strongly affect the ionization structure of the wind, this effect is not sufficient in reducing the total radiative acceleration. When the X-rays are accounted for at the intensity and temperatures observed, there is still sufficient radiative acceleration to drive a stronger mass-loss than we empirically infer from the UV spectral lines.}, language = {en} } @article{OskinovaTodtHuenemoerderetal.2015, author = {Oskinova, Lidia M. and Todt, Helge Tobias and Huenemoerder, David P. and Hubrig, Swetlana and Ignace, Richard and Hamann, Wolf-Rainer and Balona, Luis}, title = {On X-ray pulsations in beta Cephei-type variables}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {577}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201525908}, pages = {5}, year = {2015}, abstract = {Context. beta Cep-type variables are early B-type stars that are characterized by oscillations observable in their optical light curves. At least one beta Cep-variable also shows periodic variability in X-rays. Aims. Here we study the X-ray light curves in a sample of beta Cep-variables to investigate how common X-ray pulsations are for this type of stars. Methods. We searched the Chandra and XMM-Newton X-ray archives and selected stars that were observed by these telescopes for at least three optical pulsational periods. We retrieved and analyzed the X-ray data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these objects were studied to test for their variability and periodicity. Results. While there is a weak indication for X-ray variability in beta Cru, we find no statistically significant evidence of X-ray pulsations in any of our sample stars. This might be due either to the insufficient data quality or to the physical lack of modulations. New, more sensitive observations should settle this question.}, language = {en} } @article{OskinovaSteinkeHamannetal.2013, author = {Oskinova, Lidia M. and Steinke, M. and Hamann, Wolf-Rainer and Sander, A. and Todt, Helge Tobias and Liermann, Adriane}, title = {One of the most massive stars in the Galaxy may have formed in isolation}, series = {Monthly notices of the Royal Astronomical Society}, volume = {436}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stt1817}, pages = {3357 -- 3365}, year = {2013}, abstract = {Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal for investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Centre (GC). We find that two such isolated massive stars display bow shocks and hence may be 'runaways' from their birthplace. Thus, some isolated massive stars in the GC region might have been born in star clusters known in this region. However, no bow shock is detected around the isolated star WR 102ka (Peony nebula star), which is one of the most massive and luminous stars in the Galaxy. This star is located at the centre of an associated circumstellar nebula. To study whether a star cluster may be 'hidden' in the surroundings of WR 102ka, to obtain new and better spectra of this star, and to measure its radial velocity, we obtained observations with the integral-field spectrograph SINFONI at the ESO's Very Large Telescope. Our observations confirm that WR 102ka is one of the most massive stars in the Galaxy and reveal that this star is not associated with a star cluster. We suggest that WR 102ka has been born in relative isolation, outside of any massive star cluster.}, language = {en} } @article{OskinovaNazeTodtetal.2014, author = {Oskinova, Lidia M. and Naze, Yael and Todt, Helge Tobias and Huenemoerder, David P. and Ignace, Richard and Hubrig, Swetlana and Hamann, Wolf-Rainer}, title = {Discovery of X-ray pulsations from a massive star}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms5024}, pages = {9}, year = {2014}, abstract = {X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star xi(1) CMa. This star is a variable of beta Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.}, language = {en} } @article{OskinovaKubatovaHamann2016, author = {Oskinova, Lidia M. and Kubatova, Brankica and Hamann, Wolf-Rainer}, title = {Moving inhomogeneous envelopes of stars}, series = {Transport in Porous Media}, volume = {183}, journal = {Transport in Porous Media}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-4073}, doi = {10.1016/j.jqsrt.2016.06.017}, pages = {100 -- 112}, year = {2016}, abstract = {Massive stars are extremely luminous and drive strong winds, blowing a large part of their matter into the galactic environment before they finally explode as a supernova. Quantitative knowledge of massive star feedback is required to understand our Universe as we see it. Traditionally, massive stars have been studied under the assumption that their winds are homogeneous and stationary, largely relying on the Sobolev approximation. However, Observations with the newest instruments, together with progress in model calculations, ultimately dictate a cardinal change of this paradigm: stellar winds are highly inhomogeneous. Hence, we are now advancing to a new stage in our understanding of stellar winds. Using the foundations laid by V.V. Sobolev and his school, we now update and further develop the stellar spectral analysis techniques. New sophisticated 3-D models of radiation transfer in inhomogeneous expanding media elucidate the physics of stellar winds and improve classical empiric mass-loss rate diagnostics. Applications of these new techniques to multiwavelength observations of massive stars yield consistent and robust stellar wind parameters. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{OskinovaIgnaceHamannetal.2003, author = {Oskinova, Lidia M. and Ignace, Richard and Hamann, Wolf-Rainer and Pollock, A. M. T. and Brown, John C.}, title = {The conspicuous absence of X-ray emission from carbon-enriched Wolf-Rayet stars}, year = {2003}, abstract = {The carbon-rich WC5 star WR 114 was not detected during a 15.9 ksec XMM-Newton observation, implying an upper limit to the X-ray luminosity of Lx < 2.5 x 1030 ergs-1 and to the X-ray to bolometric luminosity ratio of Lx/Lbol < 4 x 10-9. This confirms indications from earlier less sensitive measurements that there has been no convincing X-ray detection of any single WC star. This lack of detections is reinforced by XMM-Newton and CHANDRA observations of WC stars. Thus the conclusion has to be drawn that the stars with radiatively-driven stellar winds of this particular class are insignificant X-ray sources. We attribute this to photoelectronic absorption by the stellar wind. The high opacity of the metal-rich and dense winds from WC stars puts the radius of optical depth unity at hundreds or thousands of stellar radii for much of the X-ray band. We believe that the essential absence of hot plasma so far out in the wind exacerbated by the large distances and correspondingly high ISM column densities makes the WC stars too faint to be detectable with current technology. The result also applies to many WC stars in binary systems, of which only about 20 \% are identified X-ray sources, presumably due to colliding winds.}, language = {en} } @article{OskinovaHuenemoerderHamannetal.2017, author = {Oskinova, Lidia M. and Huenemoerder, D. P. and Hamann, Wolf-Rainer and Shenar, Tomer and Sander, Andreas Alexander Christoph and Ignace, R. and Todt, Helge Tobias and Hainich, Rainer}, title = {On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {845}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa7e79}, pages = {11}, year = {2017}, abstract = {The blue hypergiant Cyg OB2 12 (B3Ia(+)) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si XIV and Mg XII. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.}, language = {en} } @article{OskinovaHamannFeldmeieretal.2009, author = {Oskinova, Lidia M. and Hamann, Wolf-Rainer and Feldmeier, Achim and Ignace, Richard and Chu, You-Hua}, title = {Discovery of X-ray emission from the Wolf-Rayet star WR 142 of oxygen subtype}, issn = {0004-637X}, doi = {10.1088/0004-637x/693/1/L44}, year = {2009}, abstract = {We report the discovery of weak yet hard X-ray emission from the Wolf-Rayet (WR) star WR 142 with the XMM- Newton X-ray telescope. Being of spectral subtype WO2, WR 142 is a massive star in a very advanced evolutionary stage shortly before its explosion as a supernova or. gamma-ray burst. This is the first detection of X-ray emission from a WO- type star. We rule out any serendipitous X-ray sources within approximate to 1 '' of WR 142. WR 142 has an X- ray luminosity of L-X approximate to 7 x 10(30) erg s(-1), which constitutes only less than or similar to 10(-8) of its bolometric luminosity. The hard X-ray spectrum suggests a plasma temperature of about 100 MK. Commonly, X-ray emission from stellar winds is attributed to embedded shocks due to the intrinsic instability of the radiation driving. From qualitative considerations we conclude that this mechanism cannot account for the hardness of the observed radiation. There are no hints for a binary companion. Therefore the only remaining, albeit speculative explanation must refer to magnetic activity. Possibly related, WR 142 seems to rotate extremely fast, as indicated by the unusually round profiles of its optical emission lines. Our detection implies that the wind of WR 142 must be relatively transparent to X-rays, which can be due to strong wind ionization, wind clumping, or nonspherical geometry from rapid rotation.}, language = {en} } @inproceedings{OskinovaHamannFeldmeier2007, author = {Oskinova, Lidia M. and Hamann, Wolf-Rainer and Feldmeier, Achim}, title = {X-raying clumped stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18133}, year = {2007}, abstract = {X-ray spectroscopy is a sensitive probe of stellar winds. X-rays originate from optically thin shock-heated plasma deep inside the wind and propagate outwards throughout absorbing cool material. Recent analyses of the line ratios from He-like ions in the X-ray spectra of O-stars highlighted problems with this general paradigm: the measured line ratios of highest ions are consistent with the location of the hottest X-ray emitting plasma very close to the base of the wind, perhaps indicating the presence of a corona, while measurements from lower ions conform with the wind-embedded shock model. Generally, to correctly model the emerging Xray spectra, a detailed knowledge of the cool wind opacities based on stellar atmosphere models is prerequisite. A nearly grey stellar wind opacity for the X-rays is deduced from the analyses of high-resolution X-ray spectra. This indicates that the stellar winds are strongly clumped. Furthermore, the nearly symmetric shape of X-ray emission line profiles can be explained if the wind clumps are radially compressed. In massive binaries the orbital variations of X-ray emission allow to probe the opacity of the stellar wind; results support the picture of strong wind clumping. In high-mass X-ray binaries, the stochastic X-ray variability and the extend of the stellar-wind part photoionized by X-rays provide further strong evidence that stellar winds consist of dense clumps.}, language = {en} }