@misc{Voland2014, type = {Master Thesis}, author = {Voland, Patrick}, title = {Webbasierte Visualisierung von Extended Floating Car Data (XFCD)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96751}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 176}, year = {2014}, abstract = {Moderne Kraftfahrzeuge verf{\"u}gen {\"u}ber eine Vielzahl an Sensoren, welche f{\"u}r einen reibungslosen technischen Betrieb ben{\"o}tigt werden. Hierzu z{\"a}hlen neben fahrzeugspezifischen Sensoren (wie z.B. Motordrehzahl und Fahrzeuggeschwindigkeit) auch umweltspezifische Sensoren (wie z.B. Luftdruck und Umgebungstemperatur). Durch die zunehmende technische Vernetzung wird es m{\"o}glich, diese Daten der Kraftfahrzeugelektronik aus dem Fahrzeug heraus f{\"u}r die verschiedensten Zwecke zu verwenden. Die vorliegende Arbeit soll einen Beitrag dazu leisten, diese neue Art an massenhaften Daten im Sinne des Konzepts der „Extended Floating Car Data" (XFCD) als Geoinformationen nutzbar zu machen und diese f{\"u}r raumzeitliche Visualisierungen (zur visuellen Analyse) anwenden zu k{\"o}nnen. In diesem Zusammenhang wird speziell die Perspektive des Umwelt- und Verkehrsmonitoring betrachtet, wobei die Anforderungen und Potentiale mit Hilfe von Experteninterviews untersucht werden. Es stellt sich die Frage, welche Daten durch die Kraftfahrzeugelektronik geliefert und wie diese m{\"o}glichst automatisiert erfasst, verarbeitet, visualisiert und {\"o}ffentlich bereitgestellt werden k{\"o}nnen. Neben theoretischen und technischen Grundlagen zur Datenerfassung und -nutzung liegt der Fokus auf den Methoden der kartographischen Visualisierung. Dabei soll der Frage nachgegangenen werden, ob eine technische Implementierung ausschließlich unter Verwendung von Open Source Software m{\"o}glich ist. Das Ziel der Arbeit bildet ein zweigliedriger Ansatz, welcher zum einen die Visualisierung f{\"u}r ein exemplarisch gew{\"a}hltes Anwendungsszenario und zum anderen die prototypische Implementierung von der Datenerfassung im Fahrzeug unter Verwendung der gesetzlich vorgeschriebenen „On Board Diagnose"-Schnittstelle und einem Smartphone-gest{\"u}tzten Ablauf bis zur webbasierten Visualisierung umfasst.}, language = {de} } @misc{TostEhmelHeidmannetal.2018, author = {Tost, Jordi and Ehmel, Fabian and Heidmann, Frank and Olen, Stephanie M. and Bookhagen, Bodo}, title = {Hazards and accessibility}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {710}, issn = {1866-8372}, doi = {10.25932/publishup-42785}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427853}, pages = {8}, year = {2018}, abstract = {The assessment of natural hazards and risk has traditionally been built upon the estimation of threat maps, which are used to depict potential danger posed by a particular hazard throughout a given area. But when a hazard event strikes, infrastructure is a significant factor that can determine if the situation becomes a disaster. The vulnerability of the population in a region does not only depend on the area's local threat, but also on the geographical accessibility of the area. This makes threat maps by themselves insufficient for supporting real-time decision-making, especially for those tasks that involve the use of the road network, such as management of relief operations, aid distribution, or planning of evacuation routes, among others. To overcome this problem, this paper proposes a multidisciplinary approach divided in two parts. First, data fusion of satellite-based threat data and open infrastructure data from OpenStreetMap, introducing a threat-based routing service. Second, the visualization of this data through cartographic generalization and schematization. This emphasizes critical areas along roads in a simple way and allows users to visually evaluate the impact natural hazards may have on infrastructure. We develop and illustrate this methodology with a case study of landslide threat for an area in Colombia.}, language = {en} } @phdthesis{Buchholz2006, author = {Buchholz, Henrik}, title = {Real-time visualization of 3D city models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13337}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {An increasing number of applications requires user interfaces that facilitate the handling of large geodata sets. Using virtual 3D city models, complex geospatial information can be communicated visually in an intuitive way. Therefore, real-time visualization of virtual 3D city models represents a key functionality for interactive exploration, presentation, analysis, and manipulation of geospatial data. This thesis concentrates on the development and implementation of concepts and techniques for real-time city model visualization. It discusses rendering algorithms as well as complementary modeling concepts and interaction techniques. Particularly, the work introduces a new real-time rendering technique to handle city models of high complexity concerning texture size and number of textures. Such models are difficult to handle by current technology, primarily due to two problems: - Limited texture memory: The amount of simultaneously usable texture data is limited by the memory of the graphics hardware. - Limited number of textures: Using several thousand different textures simultaneously causes significant performance problems due to texture switch operations during rendering. The multiresolution texture atlases approach, introduced in this thesis, overcomes both problems. During rendering, it permanently maintains a small set of textures that are sufficient for the current view and the screen resolution available. The efficiency of multiresolution texture atlases is evaluated in performance tests. To summarize, the results demonstrate that the following goals have been achieved: - Real-time rendering becomes possible for 3D scenes whose amount of texture data exceeds the main memory capacity. - Overhead due to texture switches is kept permanently low, so that the number of different textures has no significant effect on the rendering frame rate. Furthermore, this thesis introduces two new approaches for real-time city model visualization that use textures as core visualization elements: - An approach for visualization of thematic information. - An approach for illustrative visualization of 3D city models. Both techniques demonstrate that multiresolution texture atlases provide a basic functionality for the development of new applications and systems in the domain of city model visualization.}, language = {en} } @phdthesis{Begu2007, author = {Begu, Enkela}, title = {Elections in a spatial context : a case study of Albanian parliamentary elections, 1991-2005}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15923}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Exploring elections features from a geographical perspective is the focus of this study. Its primary objective is to develop a scientific approach based on geoinformation technology (GIT) that promotes deeper understanding how geographical settings affect the spatial and temporal variations of voting behaviour and election outcomes. For this purpose, the five parliamentary elections (1991-2005) following the political turnaround in 1990 in the South East European reform country Albania have been selected as a case study. Elections, like other social phenomena that do not develop uniformly over a territory, inherit a spatial dimension. Despite of fact that elections have been researched by various scientific disciplines ranging from political science to geography, studies that incorporate their spatial dimension are still limited in number and approaches. Consequently, the methodologies needed to generate an integrated knowledge on many facets that constitute election features are lacking. This study addresses characteristics and interactions of the essential elements involved in an election process. Thus, the baseline of the approach presented here is the exploration of relations between three entities: electorate (political and sociodemographic features), election process (electoral system and code) and place (environment where voters reside). To express this interaction the concept of electoral pattern is introduced. Electoral patterns are defined by the study as the final view of election results, chiefly in tabular and/or map form, generated by the complex interaction of social, economic, juridical, and spatial features of the electorate, which has occurred at a specific time and in a particular geographical location. GIT methods of geoanalysis and geovisualization are used to investigate the characteristics of electoral patterns in their spatial and temporal distribution. Aggregate-level data modelled in map form were used to analyse and visualize the spatial distribution of election patterns components and relations. The spatial dimension of the study is addressed in the following three main relations: One, the relation between place and electorate and its expression through the social, demographic and economic features of the electorate resulting in the profile of the electorate's context; second, the electorate-election interaction which forms the baseline to explore the perspective of local contextual effects in voting behaviour and election results; third, the relation between geographical location and election outcomes reflecting the implication of determining constituency boundaries on election results. To address the above relations, three types of variables: geo, independent and dependent, have been elaborated and two models have been created. The Data Model, developed in a GIS environment, facilitates structuring of election data in order to perform spatial analysis. The peculiarity of electoral patterns - a multidimensional array that contains information on three variables, stored in data layers of dissimilar spatial units of reference and scales of value measurement - prohibit spatial analysis based on the original source data. To perform a joint spatial analysis it is therefore mandatory to restructure the spatial units of reference while preserving their semantic content. In this operation, all relevant electoral as well as socio-demographic data referenced to different administrative spatial entities are re-referenced to uniform grid cells as virtual spatial units of reference. Depending on the scale of data acquisition and map presentation, a cell width of 0.5 km has been determined. The resulting fine grid forms the basis of subsequent data analyses and correlations. Conversion of the original vector data layers into target raster layers allows for unification of spatial units, at the same time retaining the existing level of detail of the data (variables, uniform distribution over space). This in turn facilitates the integration of the variables studied and the performance of GIS-based spatial analysis. In addition, conversion to raster format makes it possible to assign new values to the original data, which are based on a common scale eliminating existing differences in scale of measurement. Raster format operations of the type described are well-established data analysis techniques in GIT, yet they have rarely been employed to process and analyse electoral data. The Geovisualization Model, developed in a cartographic environment, complements the Data Model. As an analog graphic model it facilitates efficient communication and exploration of geographical information through cartographic visualization. Based on this model, 52 choropleth maps have been generated. They represent the outcome of the GIS-based electoral data analysis. The analog map form allows for in-depth visual analysis and interpretation of the distribution and correlation of the electoral data studied. For researchers, decision makers and a wider public the maps provide easy-to-access information on and promote easy-to-understand insight into the spatial dimension, regional variation and resulting structures of the electoral patterns defined.}, language = {en} }