@phdthesis{Papenbrock2017, author = {Papenbrock, Thorsten}, title = {Data profiling - efficient discovery of dependencies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406705}, school = {Universit{\"a}t Potsdam}, pages = {viii, ii, 141}, year = {2017}, abstract = {Data profiling is the computer science discipline of analyzing a given dataset for its metadata. The types of metadata range from basic statistics, such as tuple counts, column aggregations, and value distributions, to much more complex structures, in particular inclusion dependencies (INDs), unique column combinations (UCCs), and functional dependencies (FDs). If present, these statistics and structures serve to efficiently store, query, change, and understand the data. Most datasets, however, do not provide their metadata explicitly so that data scientists need to profile them. While basic statistics are relatively easy to calculate, more complex structures present difficult, mostly NP-complete discovery tasks; even with good domain knowledge, it is hardly possible to detect them manually. Therefore, various profiling algorithms have been developed to automate the discovery. None of them, however, can process datasets of typical real-world size, because their resource consumptions and/or execution times exceed effective limits. In this thesis, we propose novel profiling algorithms that automatically discover the three most popular types of complex metadata, namely INDs, UCCs, and FDs, which all describe different kinds of key dependencies. The task is to extract all valid occurrences from a given relational instance. The three algorithms build upon known techniques from related work and complement them with algorithmic paradigms, such as divide \& conquer, hybrid search, progressivity, memory sensitivity, parallelization, and additional pruning to greatly improve upon current limitations. Our experiments show that the proposed algorithms are orders of magnitude faster than related work. They are, in particular, now able to process datasets of real-world, i.e., multiple gigabytes size with reasonable memory and time consumption. Due to the importance of data profiling in practice, industry has built various profiling tools to support data scientists in their quest for metadata. These tools provide good support for basic statistics and they are also able to validate individual dependencies, but they lack real discovery features even though some fundamental discovery techniques are known for more than 15 years. To close this gap, we developed Metanome, an extensible profiling platform that incorporates not only our own algorithms but also many further algorithms from other researchers. With Metanome, we make our research accessible to all data scientists and IT-professionals that are tasked with data profiling. Besides the actual metadata discovery, the platform also offers support for the ranking and visualization of metadata result sets. Being able to discover the entire set of syntactically valid metadata naturally introduces the subsequent task of extracting only the semantically meaningful parts. This is challenge, because the complete metadata results are surprisingly large (sometimes larger than the datasets itself) and judging their use case dependent semantic relevance is difficult. To show that the completeness of these metadata sets is extremely valuable for their usage, we finally exemplify the efficient processing and effective assessment of functional dependencies for the use case of schema normalization.}, language = {en} } @phdthesis{Harmouch2020, author = {Harmouch, Hazar}, title = {Single-column data profiling}, doi = {10.25932/publishup-47455}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474554}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2020}, abstract = {The research area of data profiling consists of a large set of methods and processes to examine a given dataset and determine metadata about it. Typically, different data profiling tasks address different kinds of metadata, comprising either various statistics about individual columns (Single-column Analysis) or relationships among them (Dependency Discovery). Among the basic statistics about a column are data type, header, the number of unique values (the column's cardinality), maximum and minimum values, the number of null values, and the value distribution. Dependencies involve, for instance, functional dependencies (FDs), inclusion dependencies (INDs), and their approximate versions. Data profiling has a wide range of conventional use cases, namely data exploration, cleansing, and integration. The produced metadata is also useful for database management and schema reverse engineering. Data profiling has also more novel use cases, such as big data analytics. The generated metadata describes the structure of the data at hand, how to import it, what it is about, and how much of it there is. Thus, data profiling can be considered as an important preparatory task for many data analysis and mining scenarios to assess which data might be useful and to reveal and understand a new dataset's characteristics. In this thesis, the main focus is on the single-column analysis class of data profiling tasks. We study the impact and the extraction of three of the most important metadata about a column, namely the cardinality, the header, and the number of null values. First, we present a detailed experimental study of twelve cardinality estimation algorithms. We classify the algorithms and analyze their efficiency, scaling far beyond the original experiments and testing theoretical guarantees. Our results highlight their trade-offs and point out the possibility to create a parallel or a distributed version of these algorithms to cope with the growing size of modern datasets. Then, we present a fully automated, multi-phase system to discover human-understandable, representative, and consistent headers for a target table in cases where headers are missing, meaningless, or unrepresentative for the column values. Our evaluation on Wikipedia tables shows that 60\% of the automatically discovered schemata are exact and complete. Considering more schema candidates, top-5 for example, increases this percentage to 72\%. Finally, we formally and experimentally show the ghost and fake FDs phenomenon caused by FD discovery over datasets with missing values. We propose two efficient scores, probabilistic and likelihood-based, for estimating the genuineness of a discovered FD. Our extensive set of experiments on real-world and semi-synthetic datasets show the effectiveness and efficiency of these scores.}, language = {en} }