@phdthesis{Alexoudi2023, author = {Alexoudi, Xanthippi}, title = {Clarifying the discrepant results in the characterization of exoplanetary atmospheres}, doi = {10.25932/publishup-60565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-605659}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 125}, year = {2023}, abstract = {Planets outside our solar system, so-called "exoplanets", can be detected with different methods, and currently more than 5000 exoplanets have been confirmed, according to NASA Exoplanet Archive. One major highlight of the studies on exoplanets in the past twenty years is the characterization of their atmospheres usingtransmission spectroscopy as the exoplanet transits. However, this characterization is a challenging process and sometimes there are reported discrepancies in the literature regarding the atmosphere of the same exoplanet. One potential reason for the observed atmospheric inconsistencies is called impact parameter degeneracy, and it is highly driven by the limb darkening effect of the host star. A brief introductionto those topics in presented in chapter 1, while the motivation and objectives of thiswork are described in chapter 2.The first goal is to clarify the origin of the transmission spectrum, which is anindicator of an exoplanet's atmosphere; whether it is real or influenced by the impactparameter degeneracy. A second goal is to determine whether photometry from space using the Transiting Exoplanet Survey Satellite (TESS), could improve on the major parameters, which are responsible for the aforementioned degeneracy, of known exoplanetary systems. Three individual projects were conducted in order toaddress those goals. The three manuscripts are presented, in short, in the manuscriptoverview in chapter 3.More specifically, in chapter 4, the first manuscript is presented, which is an ex-tended investigation on the impact parameter degeneracy and its application onsynthetic transmission spectra. Evidently, the limb darkening of the host star isan important driver for this effect. It keeps the degeneracy persisting through different groups of exoplanets, based on the uncertainty of their impact parameter and on the type of their host star. The second goal, was addressed in the second and third manuscripts (chapter 5 and chapter 6 respectively). Using observationsfrom the TESS mission, two samples of exoplanets were studied; 10 transiting inflated hot-Jupiters and 43 transiting grazing systems. Potentially, the refinement or confirmation of their major system parameters' measurements can assist in solving current or future discrepancies regarding their atmospheric characterization.In chapter 7 the conclusions of this work are discussed, while in chapter 8 itis proposed how TESS's measurements can be able to discern between erroneousinterpretations of transmission spectra, especially on systems where the impact parameter degeneracy is likely not applicable.}, language = {en} }