@article{WeilbacherMonrealIberoKollatschnyetal.2015, author = {Weilbacher, Peter Michael and Monreal-Ibero, Ana and Kollatschny, Wolfram and Ginsburg, Adam and McLeod, Anna F. and Kamann, Sebastian and Sandin, Christer and Palsa, Ralf and Wisotzki, Lutz and Bacon, Roland and Selman, Fernando and Brinchmann, Jarle and Caruana, Joseph and Kelz, Andreas and Martinsson, Thomas and Pecontal-Rousset, Arlette and Richard, Johan and Wendt, Martin}, title = {A MUSE map of the central Orion Nebula (M 42)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {582}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526529}, pages = {16}, year = {2015}, abstract = {We present a new integral field spectroscopic dataset of the central part of the Orion Nebula (M 42), observed with the MUSE instrument at the ESO VLT. We reduced the data with the public MUSE pipeline. The output products are two FITS cubes with a spatial size of similar to 5'9 x 4'9 (corresponding to similar to 0.76 x 0.63 pc(2)) and a contiguous wavelength coverage of 4595 ... 9366 angstrom, spatially sampled at 0 ''.2. We provide two versions with a sampling of 1.25 angstrom and 0.85 angstrom in dispersion direction. Together with variance cubes these files have a size of 75 and 110 GiB on disk. They are the largest integral field mosaics to date in terms of information content. We make them available for use in the community. To validate this dataset, we compare world coordinates, reconstructed magnitudes, velocities, and absolute and relative emission line fluxes to the literature values and find excellent agreement. We derive a 2D map of extinction and present de-reddened flux maps of several individual emission lines and of diagnostic line ratios. We estimate physical properties of the Orion Nebula, using the emission line ratios [N II] and [S III] (for the electron temperature T-e) and [S II] and [Cl III] (for the electron density N-e), and show 2D images of the velocity measured from several bright emission lines.}, language = {en} }