@misc{Jaguaribe2004, author = {Jaguaribe, Helio}, title = {Brasilien in der neuen Struktur der internationalen Beziehungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-46666}, year = {2004}, abstract = {The international community criticises the unilateral actions of the US in Iraq. As a reaction, the United States tries to extend their sphere of influence in other regions. The Brazilian author warns that Brazil in particular could be exposed to this increasing pressure. Therefore Brazil has to take the following five measures: strengthening of Mercosur, a Free Trade Area between the Andean Community and Mercosur, a cooperation agreement with the EU, cooperation with other NICs, and lobbying inside the US.}, language = {de} } @phdthesis{Guentner2002, author = {G{\"u}ntner, Andreas}, title = {Large-scale hydrological modelling in the semi-arid north-east of Brazil}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000511}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Semi-arid areas are, due to their climatic setting, characterized by small water resources. An increasing water demand as a consequence of population growth and economic development as well as a decreasing water availability in the course of possible climate change may aggravate water scarcity in future, which often exists already for present-day conditions in these areas. Understanding the mechanisms and feedbacks of complex natural and human systems, together with the quantitative assessment of future changes in volume, timing and quality of water resources are a prerequisite for the development of sustainable measures of water management to enhance the adaptive capacity of these regions. For this task, dynamic integrated models, containing a hydrological model as one component, are indispensable tools. The main objective of this study is to develop a hydrological model for the quantification of water availability in view of environmental change over a large geographic domain of semi-arid environments. The study area is the Federal State of Cear{\´a} (150 000 km2) in the semi-arid north-east of Brazil. Mean annual precipitation in this area is 850 mm, falling in a rainy season with duration of about five months. Being mainly characterized by crystalline bedrock and shallow soils, surface water provides the largest part of the water supply. The area has recurrently been affected by droughts which caused serious economic losses and social impacts like migration from the rural regions. The hydrological model Wasa (Model of Water Availability in Semi-Arid Environments) developed in this study is a deterministic, spatially distributed model being composed of conceptual, process-based approaches. Water availability (river discharge, storage volumes in reservoirs, soil moisture) is determined with daily resolution. Sub-basins, grid cells or administrative units (municipalities) can be chosen as spatial target units. The administrative units enable the coupling of Wasa in the framework of an integrated model which contains modules that do not work on the basis of natural spatial units. The target units mentioned above are disaggregated in Wasa into smaller modelling units within a new multi-scale, hierarchical approach. The landscape units defined in this scheme capture in particular the effect of structured variability of terrain, soil and vegetation characteristics along toposequences on soil moisture and runoff generation. Lateral hydrological processes at the hillslope scale, as reinfiltration of surface runoff, being of particular importance in semi-arid environments, can thus be represented also within the large-scale model in a simplified form. Depending on the resolution of available data, small-scale variability is not represented explicitly with geographic reference in Wasa, but by the distribution of sub-scale units and by statistical transition frequencies for lateral fluxes between these units. Further model components of Wasa which respect specific features of semi-arid hydrology are: (1) A two-layer model for evapotranspiration comprises energy transfer at the soil surface (including soil evaporation), which is of importance in view of the mainly sparse vegetation cover. Additionally, vegetation parameters are differentiated in space and time in dependence on the occurrence of the rainy season. (2) The infiltration module represents in particular infiltration-excess surface runoff as the dominant runoff component. (3) For the aggregate description of the water balance of reservoirs that cannot be represented explicitly in the model, a storage approach respecting different reservoirs size classes and their interaction via the river network is applied. (4) A model for the quantification of water withdrawal by water use in different sectors is coupled to Wasa. (5) A cascade model for the temporal disaggregation of precipitation time series, adapted to the specific characteristics of tropical convective rainfall, is applied for the generating rainfall time series of higher temporal resolution. All model parameters of Wasa can be derived from physiographic information of the study area. Thus, model calibration is primarily not required. Model applications of Wasa for historical time series generally results in a good model performance when comparing the simulation results of river discharge and reservoir storage volumes with observed data for river basins of various sizes. The mean water balance as well as the high interannual and intra-annual variability is reasonably represented by the model. Limitations of the modelling concept are most markedly seen for sub-basins with a runoff component from deep groundwater bodies of which the dynamics cannot be satisfactorily represented without calibration. Further results of model applications are: (1) Lateral processes of redistribution of runoff and soil moisture at the hillslope scale, in particular reinfiltration of surface runoff, lead to markedly smaller discharge volumes at the basin scale than the simple sum of runoff of the individual sub-areas. Thus, these processes are to be captured also in large-scale models. The different relevance of these processes for different conditions is demonstrated by a larger percentage decrease of discharge volumes in dry as compared to wet years. (2) Precipitation characteristics have a major impact on the hydrological response of semi-arid environments. In particular, underestimated rainfall intensities in the rainfall input due to the rough temporal resolution of the model and due to interpolation effects and, consequently, underestimated runoff volumes have to be compensated in the model. A scaling factor in the infiltration module or the use of disaggregated hourly rainfall data show good results in this respect. The simulation results of Wasa are characterized by large uncertainties. These are, on the one hand, due to uncertainties of the model structure to adequately represent the relevant hydrological processes. On the other hand, they are due to uncertainties of input data and parameters particularly in view of the low data availability. Of major importance is: (1) The uncertainty of rainfall data with regard to their spatial and temporal pattern has, due to the strong non-linear hydrological response, a large impact on the simulation results. (2) The uncertainty of soil parameters is in general of larger importance on model uncertainty than uncertainty of vegetation or topographic parameters. (3) The effect of uncertainty of individual model components or parameters is usually different for years with rainfall volumes being above or below the average, because individual hydrological processes are of different relevance in both cases. Thus, the uncertainty of individual model components or parameters is of different importance for the uncertainty of scenario simulations with increasing or decreasing precipitation trends. (4) The most important factor of uncertainty for scenarios of water availability in the study area is the uncertainty in the results of global climate models on which the regional climate scenarios are based. Both a marked increase or a decrease in precipitation can be assumed for the given data. Results of model simulations for climate scenarios until the year 2050 show that a possible future change in precipitation volumes causes a larger percentage change in runoff volumes by a factor of two to three. In the case of a decreasing precipitation trend, the efficiency of new reservoirs for securing water availability tends to decrease in the study area because of the interaction of the large number of reservoirs in retaining the overall decreasing runoff volumes.}, subject = {Cear{\´a} / Semiarides Gebiet / Wasserreserve / Hydrologie / Mathematisches Modell}, language = {en} } @misc{Germano2014, author = {Germano, Gustavo}, title = {Aus{\^e}ncias Brasil}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71139}, year = {2014}, abstract = {Von der Milit{\"a}rdiktatur ermordet und spurlos verschwunden - diese Ausstellung greift zur{\"u}ck auf Fotoalben der Familienangeh{\"o}rigen von Brasilianern, die der systematischen Repression, Folter und Verschleppung der brasilianischen Milit{\"a}rdiktatur (1964-1985) zum Opfer gefallen sind: Arbeiter, Stadtguerilleros, Studenten, Akademiker, ganze Familien.}, language = {de} } @phdthesis{Francke2009, author = {Francke, Till}, title = {Measurement and modelling of water and sediment fluxes in meso-scale dryland catchments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-31525}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Water shortage is a serious threat for many societies worldwide. In drylands, water management measures like the construction of reservoirs are affected by eroded sediments transported in the rivers. Thus, the capability of assessing water and sediment fluxes at the river basin scale is of vital importance to support management decisions and policy making. This subject was addressed by the DFG-funded SESAM-project (Sediment Export from large Semi-Arid catchments: Measurements and Modelling). As a part of this project, this thesis focuses on (1) the development and implementation of an erosion module for a meso-scale catchment model, (2) the development of upscaling and generalization methods for the parameterization of such model, (3) the execution of measurements to obtain data required for the modelling and (4) the application of the model to different study areas and its evaluation. The research was carried out in two meso-scale dryland catchments in NE-Spain: Ribera Salada (200 km²) and Is{\´a}bena (450 km²). Adressing objective 1, WASA-SED, a spatially semi-distributed model for water and sediment transport at the meso-scale was developed. The model simulates runoff and erosion processes at the hillslope scale, transport processes of suspended and bedload fluxes in the river reaches, and retention and remobilisation processes of sediments in reservoirs. This thesis introduces the model concept, presents current model applications and discusses its capabilities and limitations. Modelling at larger scales faces the dilemma of describing relevant processes while maintaining a manageable demand for input data and computation time. WASA-SED addresses this challenge by employing an innovative catena-based upscaling approach: the landscape is represented by characteristic toposequences. For deriving these toposequences with regard to multiple attributes (eg. topography, soils, vegetation) the LUMP-algorithm (Landscape Unit Mapping Program) was developed and related to objective 2. It incorporates an algorithm to retrieve representative catenas and their attributes, based on a Digital Elevation Model and supplemental spatial data. These catenas are classified to provide the discretization for the WASA-SED model. For objective 3, water and sediment fluxes were monitored at the catchment outlet of the Is{\´a}bena and some of its sub-catchments. For sediment yield estimation, the intermittent measurements of suspended sediment concentration (SSC) had to be interpolated. This thesis presents a comparison of traditional sediment rating curves (SRCs), generalized linear models (GLMs) and non-parametric regression using Random Forests (RF) and Quantile Regression Forests (QRF). The observed SSCs are highly variable and range over six orders of magnitude. For these data, traditional SRCs performed poorly, as did GLMs, despite including other relevant process variables (e.g. rainfall intensities, discharge characteristics). RF and QRF proved to be very robust and performed favourably for reproducing sediment dynamics. QRF additionally excels in providing estimates on the accuracy of the predictions. Subsequent analysis showed that most of the sediment was exported during intense storms of late summer. Later floods yielded successively less sediment. Comparing sediment generation to yield at the outlet suggested considerable storage effects within the river channel. Addressing objective 4, the WASA-SED model was parameterized for the two study areas in NE Spain and applied with different foci. For Ribera Salada, the uncalibrated model yielded reasonable results for runoff and sediment. It provided quantitative measures of the change in runoff and sediment yield for different land-uses. Additional land management scenarios were presented and compared to impacts caused by climate change projections. In contrast, the application for the Is{\´a}bena focussed on exploring the full potential of the model's predictive capabilities. The calibrated model achieved an acceptable performance for the validation period in terms of water and sediment fluxes. The inadequate representation of the lower sub-catchments inflicted considerable reductions on model performance, while results for the headwater catchments showed good agreement despite stark contrasts in sediment yield. In summary, the application of WASA-SED to three catchments proved the model framework to be a practicable multi-scale approach. It successfully links the hillslope to the catchment scale and integrates the three components hillslope, river and reservoir in one model. Thus, it provides a feasible approach for tackling issues of water and sediment yield at the meso-scale. The crucial role of processes like transmission losses and sediment storage in the river has been identified. Further advances can be expected when the representation of connectivity of water and sediment fluxes (intra-hillslope, hillslope-river, intra-river) is refined and input data improves.}, language = {en} } @phdthesis{CamposdeAndrade2023, author = {Campos de Andrade, Andr{\´e} Luiz}, title = {Governing climate change in Brazil}, doi = {10.25932/publishup-58733}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587336}, school = {Universit{\"a}t Potsdam}, pages = {xxvii, 272}, year = {2023}, abstract = {Enacted in 2009, the National Policy on Climate Change (PNMC) is a milestone in the institutionalisation of climate action in Brazil. It sets greenhouse gas (GHG) emission reduction targets and a set of principles and directives that are intended to lay the foundations for a cross-sectoral and multilevel climate policy in the country. However, after more than a decade since its establishment, the PNMC has experienced several obstacles related to its governance, such as coordination, planning and implementation issues. All of these issues pose threats to the effectiveness of GHG mitigation actions in the country. By looking at the intragovernmental and intergovernmental relationships that have taken place during the lifetime of the PNMC and its sectoral plans on agriculture (the Sectoral Plan for Mitigation and Adaptation to Climate Change for the Consolidation of a Low-Carbon Economy in Agriculture [ABC Plan]), transport and urban mobility (the Sectoral Plan for Transportation and Urban Mobility for Mitigation and Adaption of Climate Change [PSTM]), this exploratory qualitative research investigates the Brazilian climate change governance guided by the following relevant questions: how are climate policy arrangements organised and coordinated among governmental actors to mitigate GHG emissions in Brazil? What might be the reasons behind how such arrangements are established? What are the predominant governance gaps of the different GHG mitigation actions examined? Why do these governance gaps occur? Theoretically grounded in the literature on multilevel governance and coordination of public policies, this study employs a novel analytical framework that aims to identify and discuss the occurrence of four types of governance gaps (i.e. politics, institutions and processes, resources and information) in the three GHG mitigation actions (cases) examined (i.e. the PNMC, ABC Plan and PSTM). The research results are twofold. First, they reveal that Brazil has struggled to organise and coordinate governmental actors from different policy constituencies and different levels of government in the implementation of the GHG mitigation actions examined. Moreover, climate policymaking has mostly been influenced by the Ministry of Environment (MMA) overlooking the multilevel and cross-sectoral approaches required for a country's climate policy to mitigate and adapt to climate change, especially if it is considered an economy-wide Nationally Determined Contribution (NDC), as the Brazilian one is. Second, the study identifies a greater manifestation of gaps in politics (e.g. lack of political will in supporting climate action), institutions and processes (e.g. failures in the design of institutions and policy instruments, coordination and monitoring flaws, and difficulties in building climate federalism) in all cases studied. It also identifies that there have been important advances in the production of data and information for decision-making and, to a lesser extent, in the allocation of technical and financial resources in the cases studied; however, it is necessary to highlight the limitation of these improvements due to turf wars, a low willingness to share information among federal government players, a reduced volume of financial resources and an unequal distribution of capacities among the federal ministries and among the three levels of government. A relevant finding is that these gaps tend to be explained by a combination of general and sectoral set aspects. Regarding the general aspects, which are common to all cases examined, the following can be mentioned: i) unbalanced policy capabilities existing among the different levels of government, ii) a limited (bureaucratic) practice to produce a positive coordination mode within cross-sectoral policies, iii) the socioeconomic inequalities that affect the way different governments and economic sectors perceive the climate issue (selective perception) and iv) the reduced dialogue between national and subnational governments on the climate agenda (poor climate federalism). The following sectoral aspects can be mentioned: i) the presence of path dependencies that make the adoption of transformative actions harder and ii) the absence of perceived co-benefits that the climate agenda can bring to each economic sector (e.g. reputational gains, climate protection and access to climate financial markets). By addressing the theoretical and practical implications of the results, this research provides key insights to tackle the governance gaps identified and to help Brazil pave the way to achieving its NDCs and net-zero targets. At the theoretical level, this research and the current country's GHG emissions profile suggest that the Brazilian climate policy is embedded in a cross-sectoral and multilevel arena, which requires the effective involvement of different levels of political and bureaucratic powers and the consideration of the country's socioeconomic differences. Thus, the research argues that future improvements of the Brazilian climate policy and its governance setting must frame climate policy as an economic development agenda, the ramifications of which go beyond the environmental sector. An initial consequence of this new perspective may be a shift in the political and technical leadership from the MMA to the institutions of the centre of government (Executive Office of the President of Brazil) and those in charge of the country's economic policy (Ministry of Economy). This change could provide greater capacity for coordination, integration and enforcement as well as for addressing certain expected gaps (e.g. financial and technical resources). It could also lead to greater political prioritisation of the agenda at the highest levels of government. Moreover, this shift of the institutional locus could contribute to greater harmonisation between domestic development priorities and international climate politics. Finally, the research also suggests that this approach would reduce bureaucratic elitism currently in place due to climate policy being managed by Brazilian governmental institutions, which is still a theme of a few ministries and a reason for the occurrence of turf wars.}, language = {en} } @misc{Behrens2013, author = {Behrens, Benedikt}, title = {Eine unvorhergesehene Revolte : Proteste in Brasilien}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71156}, year = {2013}, abstract = {Brasilien ist sowohl politisch als auch wirtschaftlich ein aufstrebendes Land. Seit Jahren regiert in Bras{\´i}lia eine linke Regierung.Trotz Fortschritten im sozialen Bereich gibt es zahlreiche Reformbaustellen. Die gesellschaftliche Spaltung ist tief. Dar{\"u}ber kann auch die anstehende Fußball-WM nicht hinwegt{\"a}uschen. Im Gegenteil! Die Brasilianer machten sich unerwartet Luft. Welche Konsequenzen wird Pr{\"a}sidentin Rousseff daraus ziehen und was bedeutet dies f{\"u}r die anderen Linksregierungen in S{\"u}damerika?}, language = {de} } @misc{OPUS4-5849, title = {Brasilien - Land der Gegens{\"a}tze}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-60493}, year = {2012}, abstract = {F{\"u}r Stefan Zweig war Brasilien 1941 "ein Land der Zukunft". Die Realit{\"a}t sieht anders aus: Bis heute ist es ein Land der Gegens{\"a}tze, gepr{\"a}gt vor allem durch jenen von Arm und Reich. Was Gini-Koeffizienten n{\"u}chtern in Zahlen ausdr{\"u}cken, kann man in Metropolen mit hypermodernen Zentren und Favelas an Bergh{\"a}ngen auf engstem Raum erleben. Vor allem die Verteilung von Land resultiert in Auseinandersetzungen. Experten analysieren im Thema die Lage eines Staates, der in seinen Widerspr{\"u}chlichkeiten gefangen ist.}, language = {de} }