@article{WichaHuisingaKloft2017, author = {Wicha, Sebastian G. and Huisinga, Wilhelm and Kloft, Charlotte}, title = {Translational pharmacometric evaluation of typical antibiotic broad-spectrum combination therapies against staphylococcus aureus exploiting in vitro information}, series = {CPT: pharmacometrics \& systems pharmacology}, volume = {6}, journal = {CPT: pharmacometrics \& systems pharmacology}, publisher = {Wiley}, address = {Hoboken}, issn = {2163-8306}, doi = {10.1002/psp4.12197}, pages = {512 -- 522}, year = {2017}, abstract = {Broad-spectrum antibiotic combination therapy is frequently applied due to increasing resistance development of infective pathogens. The objective of the present study was to evaluate two common empiric broad-spectrum combination therapies consisting of either linezolid (LZD) or vancomycin (VAN) combined with meropenem (MER) against Staphylococcus aureus (S. aureus) as the most frequent causative pathogen of severe infections. A semimechanistic pharmacokinetic-pharmacodynamic (PK-PD) model mimicking a simplified bacterial life-cycle of S. aureus was developed upon time-kill curve data to describe the effects of LZD, VAN, and MER alone and in dual combinations. The PK-PD model was successfully (i) evaluated with external data from two clinical S. aureus isolates and further drug combinations and (ii) challenged to predict common clinical PK-PD indices and breakpoints. Finally, clinical trial simulations were performed that revealed that the combination of VAN-MER might be favorable over LZD-MER due to an unfavorable antagonistic interaction between LZD and MER.}, language = {en} } @misc{WeisseMiddletonHuisinga2010, author = {Weiße, Andrea Y. and Middleton, Richard H. and Huisinga, Wilhelm}, title = {Quantifying uncertainty, variability and likelihood for ordinary differential equation models}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {894}, issn = {1866-8372}, doi = {10.25932/publishup-43134}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431340}, pages = {12}, year = {2010}, abstract = {Background In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. Results The partial differential equation that describes the evolution of this probability density function has a form that is particularly amenable to application of the well-known method of characteristics. The value of the density at some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension (for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with significant advantages over more traditional Monte Carlo and related approaches especially when studying regions with low probability. Conclusions While such approaches based on the method of characteristics are common practice in other disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several examples illustrate performance and accuracy of the approach and its limitations.}, language = {en} } @article{WeisseMiddletonHuisinga2010, author = {Weiße, Andrea Y. and Middleton, Richard H. and Huisinga, Wilhelm}, title = {Quantifying uncertainty, variability and likelihood for ordinary differential equation models}, issn = {1752-0509}, doi = {10.1186/1752-0509-4-144}, year = {2010}, abstract = {Background: In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. Results: The partial differential equation that describes the evolution of this probability density function has a form that is particularly amenable to application of the well- known method of characteristics. The value of the density at some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension (for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with significant advantages over more traditional Monte Carlo and related approaches especially when studying regions with low probability. Conclusions: While such approaches based on the method of characteristics are common practice in other disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several examples illustrate performance and accuracy of the approach and its limitations.}, language = {en} } @misc{WeisserStueblerMatheisetal.2017, author = {Weisser, Karin and St{\"u}bler, Sabine and Matheis, Walter and Huisinga, Wilhelm}, title = {Towards toxicokinetic modelling of aluminium exposure from adjuvants in medicinal products}, series = {Regulatory toxicology and pharmacology : official journal of the International Society for Regulatory Toxicology and Pharmacology}, volume = {88}, journal = {Regulatory toxicology and pharmacology : official journal of the International Society for Regulatory Toxicology and Pharmacology}, publisher = {Elsevier}, address = {San Diego}, issn = {0273-2300}, doi = {10.1016/j.yrtph.2017.02.018}, pages = {310 -- 321}, year = {2017}, abstract = {As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously reevaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment. (C) 2017 Elsevier Inc. All rights reserved.}, language = {en} } @article{WeissHuisinga2011, author = {Weiss, Andrea Y. and Huisinga, Wilhelm}, title = {Error-controlled global sensitivity analysis of ordinary differential equations}, series = {Journal of computational physics}, volume = {230}, journal = {Journal of computational physics}, number = {17}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9991}, doi = {10.1016/j.jcp.2011.05.011}, pages = {6824 -- 6842}, year = {2011}, abstract = {We propose a novel strategy for global sensitivity analysis of ordinary differential equations. It is based on an error-controlled solution of the partial differential equation (PDE) that describes the evolution of the probability density function associated with the input uncertainty/variability. The density yields a more accurate estimate of the output uncertainty/variability, where not only some observables (such as mean and variance) but also structural properties (e.g., skewness, heavy tails, bi-modality) can be resolved up to a selected accuracy. For the adaptive solution of the PDE Cauchy problem we use the Rothe method with multiplicative error correction, which was originally developed for the solution of parabolic PDEs. We show that, unlike in parabolic problems, conservation properties necessitate a coupling of temporal and spatial accuracy to avoid accumulation of spatial approximation errors over time. We provide convergence conditions for the numerical scheme and suggest an implementation using approximate approximations for spatial discretization to efficiently resolve the coupling of temporal and spatial accuracy. The performance of the method is studied by means of low-dimensional case studies. The favorable properties of the spatial discretization technique suggest that this may be the starting point for an error-controlled sensitivity analysis in higher dimensions.}, language = {en} } @article{vonKleistMenzStockeretal.2011, author = {von Kleist, Max and Menz, Stephan and Stocker, Hartmut and Arasteh, Keikawus and Schuette, Christof and Huisinga, Wilhelm}, title = {HIV quasispecies dynamics during pro-active treatment switching impact on multi-drug resistance and resistance archiving in latent reservoirs}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {3}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0018204}, pages = {12}, year = {2011}, abstract = {The human immunodeficiency virus (HIV) can be suppressed by highly active anti-retroviral therapy (HAART) in the majority of infected patients. Nevertheless, treatment interruptions inevitably result in viral rebounds from persistent, latently infected cells, necessitating lifelong treatment. Virological failure due to resistance development is a frequent event and the major threat to treatment success. Currently, it is recommended to change treatment after the confirmation of virological failure. However, at the moment virological failure is detected, drug resistant mutants already replicate in great numbers. They infect numerous cells, many of which will turn into latently infected cells. This pool of cells represents an archive of resistance, which has the potential of limiting future treatment options. The objective of this study was to design a treatment strategy for treatment-naive patients that decreases the likelihood of early treatment failure and preserves future treatment options. We propose to apply a single, pro-active treatment switch, following a period of treatment with an induction regimen. The main goal of the induction regimen is to decrease the abundance of randomly generated mutants that confer resistance to the maintenance regimen, thereby increasing subsequent treatment success. Treatment is switched before the overgrowth and archiving of mutant strains that carry resistance against the induction regimen and would limit its future re-use. In silico modelling shows that an optimal trade-off is achieved by switching treatment at \& 80 days after the initiation of antiviral therapy. Evaluation of the proposed treatment strategy demonstrated significant improvements in terms of resistance archiving and virological response, as compared to conventional HAART. While continuous pro-active treatment alternation improved the clinical outcome in a randomized trial, our results indicate that a similar improvement might also be reached after a single pro-active treatment switch. The clinical validity of this finding, however, remains to be shown by a corresponding trial.}, language = {en} } @inproceedings{SteenholdtEdlundAinsworthetal.2015, author = {Steenholdt, Casper and Edlund, Helena and Ainsworth, Mark A. and Brynskov, Jorn and Thomsen, Ole Ostergaard and Huisinga, Wilhelm and Kloft, Charlotte}, title = {Relationship between measures of infliximab exposure and clinical outcome of infliximab intensification at therapeutic failure in Crohn's disease}, series = {JOURNAL OF CROHNS \& COLITIS}, volume = {9}, booktitle = {JOURNAL OF CROHNS \& COLITIS}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1873-9946}, pages = {S330 -- S330}, year = {2015}, language = {en} } @article{StachanowNeumannBlankensteinetal.2022, author = {Stachanow, Viktoria and Neumann, Uta and Blankenstein, Oliver and Bindellini, Davide and Melin, Johanna and Ross, Richard and Whitaker, Martin J. J. and Huisinga, Wilhelm and Michelet, Robin and Kloft, Charlotte}, title = {Exploring dried blood spot cortisol concentrations as an alternative for monitoring pediatric adrenal insufficiency patients}, series = {Frontiers in pharmacology}, volume = {13}, journal = {Frontiers in pharmacology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1663-9812}, doi = {10.3389/fphar.2022.819590}, pages = {8}, year = {2022}, abstract = {Congenital adrenal hyperplasia (CAH) is the most common form of adrenal insufficiency in childhood; it requires cortisol replacement therapy with hydrocortisone (HC, synthetic cortisol) from birth and therapy monitoring for successful treatment. In children, the less invasive dried blood spot (DBS) sampling with whole blood including red blood cells (RBCs) provides an advantageous alternative to plasma sampling. Potential differences in binding/association processes between plasma and DBS however need to be considered to correctly interpret DBS measurements for therapy monitoring. While capillary DBS samples would be used in clinical practice, venous cortisol DBS samples from children with adrenal insufficiency were analyzed due to data availability and to directly compare and thus understand potential differences between venous DBS and plasma. A previously published HC plasma pharmacokinetic (PK) model was extended by leveraging these DBS concentrations. In addition to previously characterized binding of cortisol to albumin (linear process) and corticosteroid-binding globulin (CBG; saturable process), DBS data enabled the characterization of a linear cortisol association with RBCs, and thereby providing a quantitative link between DBS and plasma cortisol concentrations. The ratio between the observed cortisol plasma and DBS concentrations varies highly from 2 to 8. Deterministic simulations of the different cortisol binding/association fractions demonstrated that with higher blood cortisol concentrations, saturation of cortisol binding to CBG was observed, leading to an increase in all other cortisol binding fractions. In conclusion, a mathematical PK model was developed which links DBS measurements to plasma exposure and thus allows for quantitative interpretation of measurements of DBS samples.}, language = {en} } @article{SchindlerMoldenhawerStangeetal.2021, author = {Schindler, Daniel and Moldenhawer, Ted and Stange, Maike and Lepro, Valentino and Beta, Carsten and Holschneider, Matthias and Huisinga, Wilhelm}, title = {Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows}, series = {PLoS Computational Biology : a new community journal}, volume = {17}, journal = {PLoS Computational Biology : a new community journal}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-734X}, doi = {10.1371/journal.pcbi.1009268}, pages = {33}, year = {2021}, abstract = {Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach.
Author summary Amoeboid motion is a crawling-like cell migration that plays an important key role in multiple biological processes such as wound healing and cancer metastasis. This type of cell motility results from expanding and simultaneously contracting parts of the cell membrane. From fluorescence images, we obtain a sequence of points, representing the cell membrane, for each time step. By using regression analysis on these sequences, we derive smooth representations, so-called contours, of the membrane. Since the number of measurements is discrete and often limited, the question is raised of how to link consecutive contours with each other. In this work, we present a novel mathematical framework in which these links are described by regularized flows allowing a certain degree of concentration or stretching of neighboring reference points on the same contour. This stretching rate, the so-called local dispersion, is used to identify expansions and contractions of the cell membrane providing a fully automated way of extracting properties of these cell shape changes. We applied our methods to time-lapse microscopy data of the social amoeba Dictyostelium discoideum.}, language = {en} } @article{PilariPreusseHuisinga2011, author = {Pilari, Sabine and Preusse, Cornelia and Huisinga, Wilhelm}, title = {Gestational influences on the pharmacokinetics of gestagenic drugs a combined in silico, in vitro and in vivo analysis}, series = {European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS}, volume = {42}, journal = {European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, EUFEPS}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0928-0987}, doi = {10.1016/j.ejps.2010.12.003}, pages = {318 -- 331}, year = {2011}, abstract = {During preclinical development of a gestagenic drug, a significant increase of the total plasma concentration was observed after multiple dosing in pregnant rabbits, but not in (non-pregnant) rats or monkeys. We used a PBPK modeling approach in combination with in vitro and in vivo data to address the question to what extent the pharmacologically active free drug concentration is affected by pregnancy induced processes. In human, a significant increase in sex hormone binding globulin (SHBG), and an induction of hepatic CYP3A4 as well as plasma esterases is observed during pregnancy. We find that the observed increase in total plasma trough levels in rabbits can be explained as a combined result of (i) drug accumulation due to multiple dosing, (ii) increase of the binding protein SHBG, and (iii) clearance induction. For human, we predict that free drug concentrations in plasma would not increase during pregnancy above the steady state trough level for non-pregnant women.}, language = {en} } @article{NassarHohmannMicheletetal.2022, author = {Nassar, Yomna M. and Hohmann, Nicolas and Michelet, Robin and Gottwalt, Katharina and Meid, Andreas D. and Burhenne, J{\"u}rgen and Huisinga, Wilhelm and Haefeli, Walter E. and Mikus, Gerd and Kloft, Charlotte}, title = {Quantification of the Time Course of CYP3A Inhibition, Activation, and Induction Using a Population Pharmacokinetic Model of Microdosed Midazolam Continuous Infusion}, series = {Clinical Pharmacokinetics}, volume = {61}, journal = {Clinical Pharmacokinetics}, number = {11}, publisher = {Springer}, address = {Northcote}, issn = {0312-5963}, doi = {10.1007/s40262-022-01175-6}, pages = {1595 -- 1607}, year = {2022}, abstract = {Background Cytochrome P450 (CYP) 3A contributes to the metabolism of many approved drugs. CYP3A perpetrator drugs can profoundly alter the exposure of CYP3A substrates. However, effects of such drug-drug interactions are usually reported as maximum effects rather than studied as time-dependent processes. Identification of the time course of CYP3A modulation can provide insight into when significant changes to CYP3A activity occurs, help better design drug-drug interaction studies, and manage drug-drug interactions in clinical practice. Objective We aimed to quantify the time course and extent of the in vivo modulation of different CYP3A perpetrator drugs on hepatic CYP3A activity and distinguish different modulatory mechanisms by their time of onset, using pharmacologically inactive intravenous microgram doses of the CYP3A-specific substrate midazolam, as a marker of CYP3A activity. Methods Twenty-four healthy individuals received an intravenous midazolam bolus followed by a continuous infusion for 10 or 36 h. Individuals were randomized into four arms: within each arm, two individuals served as a placebo control and, 2 h after start of the midazolam infusion, four individuals received the CYP3A perpetrator drug: voriconazole (inhibitor, orally or intravenously), rifampicin (inducer, orally), or efavirenz (activator, orally). After midazolam bolus administration, blood samples were taken every hour (rifampicin arm) or every 15 min (remaining study arms) until the end of midazolam infusion. A total of 1858 concentrations were equally divided between midazolam and its metabolite, 1'-hydroxymidazolam. A nonlinear mixed-effects population pharmacokinetic model of both compounds was developed using NONMEM (R). CYP3A activity modulation was quantified over time, as the relative change of midazolam clearance encountered by the perpetrator drug, compared to the corresponding clearance value in the placebo arm. Results Time course of CYP3A modulation and magnitude of maximum effect were identified for each perpetrator drug. While efavirenz CYP3A activation was relatively fast and short, reaching a maximum after approximately 2-3 h, the induction effect of rifampicin could only be observed after 22 h, with a maximum after approximately 28-30 h followed by a steep drop to almost baseline within 1-2 h. In contrast, the inhibitory impact of both oral and intravenous voriconazole was prolonged with a steady inhibition of CYP3A activity followed by a gradual increase in the inhibitory effect until the end of sampling at 8 h. Relative maximum clearance changes were +59.1\%, +46.7\%, -70.6\%, and -61.1\% for efavirenz, rifampicin, oral voriconazole, and intravenous voriconazole, respectively. Conclusions We could distinguish between different mechanisms of CYP3A modulation by the time of onset. Identification of the time at which clearance significantly changes, per perpetrator drug, can guide the design of an optimal sampling schedule for future drug-drug interaction studies. The impact of a short-term combination of different perpetrator drugs on the paradigm CYP3A substrate midazolam was characterized and can define combination intervals in which no relevant interaction is to be expected.}, language = {en} } @misc{MuellerSchoellKloppSchulzeHuisingaetal.2019, author = {M{\"u}ller-Sch{\"o}ll, A. and Klopp-Schulze, Lena and Huisinga, Wilhelm and J{\"o}rger, M. and Neven, P. and Koolen, S. L. and Mathijssen, R. H. J. and Schmidt, S. and Kloft, Charlotte}, title = {Patient-tailored tamoxifen dosing based on an increased quantitative understanding of its complex pharmacokinetics: A novel integrative modelling approach}, series = {Annals of Oncology}, volume = {30}, journal = {Annals of Oncology}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0923-7534}, pages = {1}, year = {2019}, language = {en} } @article{MuellerSchoellGroenlandScherfClaveletal.2020, author = {Mueller-Schoell, Anna and Groenland, Stefanie L. and Scherf-Clavel, Oliver and van Dyk, Madele and Huisinga, Wilhelm and Michelet, Robin and Jaehde, Ulrich and Steeghs, Neeltje and Huitema, Alwin D. R. and Kloft, Charlotte}, title = {Therapeutic drug monitoring of oral targeted antineoplastic drugs}, series = {European journal of clinical pharmacology}, volume = {77}, journal = {European journal of clinical pharmacology}, number = {4}, publisher = {Springer}, address = {Heidelberg}, issn = {0031-6970}, doi = {10.1007/s00228-020-03014-8}, pages = {441 -- 464}, year = {2020}, abstract = {Purpose This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed. Methods A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted. Results OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy. Conclusion Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window.}, language = {en} } @article{MoldenhawerMorenoSchindleretal.2022, author = {Moldenhawer, Ted and Moreno, Eduardo and Schindler, Daniel and Flemming, Sven and Holschneider, Matthias and Huisinga, Wilhelm and Alonso, Sergio and Beta, Carsten}, title = {Spontaneous transitions between amoeboid and keratocyte-like modes of migration}, series = {Frontiers in Cell and Developmental Biology}, volume = {10}, journal = {Frontiers in Cell and Developmental Biology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-634X}, doi = {10.3389/fcell.2022.898351}, pages = {13}, year = {2022}, abstract = {The motility of adherent eukaryotic cells is driven by the dynamics of the actin cytoskeleton. Despite the common force-generating actin machinery, different cell types often show diverse modes of locomotion that differ in their shape dynamics, speed, and persistence of motion. Recently, experiments in Dictyostelium discoideum have revealed that different motility modes can be induced in this model organism, depending on genetic modifications, developmental conditions, and synthetic changes of intracellular signaling. Here, we report experimental evidence that in a mutated D. discoideum cell line with increased Ras activity, switches between two distinct migratory modes, the amoeboid and fan-shaped type of locomotion, can even spontaneously occur within the same cell. We observed and characterized repeated and reversible switchings between the two modes of locomotion, suggesting that they are distinct behavioral traits that coexist within the same cell. We adapted an established phenomenological motility model that combines a reaction-diffusion system for the intracellular dynamics with a dynamic phase field to account for our experimental findings.}, language = {en} } @article{MenzLatorreSchuetteetal.2012, author = {Menz, Stephan and Latorre, Juan C. and Sch{\"u}tte, Christof and Huisinga, Wilhelm}, title = {Hybrid stochastic-deterministic solution of the chemical master equation}, series = {Multiscale modeling \& simulation : a SIAM interdisciplinary journal}, volume = {10}, journal = {Multiscale modeling \& simulation : a SIAM interdisciplinary journal}, number = {4}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1540-3459}, doi = {10.1137/110825716}, pages = {1232 -- 1262}, year = {2012}, abstract = {The chemical master equation (CME) is the fundamental evolution equation of the stochastic description of biochemical reaction kinetics. In most applications it is impossible to solve the CME directly due to its high dimensionality. Instead, indirect approaches based on realizations of the underlying Markov jump process are used, such as the stochastic simulation algorithm (SSA). In the SSA, however, every reaction event has to be resolved explicitly such that it becomes numerically inefficient when the system's dynamics include fast reaction processes or species with high population levels. In many hybrid approaches, such fast reactions are approximated as continuous processes or replaced by quasi-stationary distributions in either a stochastic or a deterministic context. Current hybrid approaches, however, almost exclusively rely on the computation of ensembles of stochastic realizations. We present a novel hybrid stochastic-deterministic approach to solve the CME directly. Our starting point is a partitioning of the molecular species into discrete and continuous species that induces a partitioning of the reactions into discrete-stochastic and continuous-deterministic processes. The approach is based on a WKB (Wentzel-Kramers-Brillouin) ansatz for the conditional probability distribution function (PDF) of the continuous species (given a discrete state) in combination with Laplace's method of integral approximation. The resulting hybrid stochastic-deterministic evolution equations comprise a CME with averaged propensities for the PDF of the discrete species that is coupled to an evolution equation of the related expected levels of the continuous species for each discrete state. In contrast to indirect hybrid methods, the impact of the evolution of discrete species on the dynamics of the continuous species has to be taken into account explicitly. The proposed approach is efficient whenever the number of discrete molecular species is small. We illustrate the performance of the new hybrid stochastic-deterministic approach in an application to model systems of biological interest.}, language = {en} } @article{MelinParraGuillenHartungetal.2018, author = {Melin, Johanna and Parra-Guillen, Zinnia Patricia and Hartung, Niklas and Huisinga, Wilhelm and Ross, Richard J. and Whitaker, Martin J. and Kloft, Charlotte}, title = {Predicting Cortisol Exposure from Paediatric Hydrocortisone Formulation Using a Semi-Mechanistic Pharmacokinetic Model Established in Healthy Adults}, series = {Clinical Pharmacokinetics}, volume = {57}, journal = {Clinical Pharmacokinetics}, number = {4}, publisher = {Springer}, address = {Northcote}, issn = {0312-5963}, doi = {10.1007/s40262-017-0575-8}, pages = {515 -- 527}, year = {2018}, abstract = {Background and objective Optimisation of hydrocortisone replacement therapy in children is challenging as there is currently no licensed formulation and dose in Europe for children under 6 years of age. In addition, hydrocortisone has non-linear pharmacokinetics caused by saturable plasma protein binding. A paediatric hydrocortisone formulation, Infacort (R) oral hydrocortisone granules with taste masking, has therefore been developed. The objective of this study was to establish a population pharmacokinetic model based on studies in healthy adult volunteers to predict hydrocortisone exposure in paediatric patients with adrenal insufficiency. Methods Cortisol and binding protein concentrations were evaluated in the absence and presence of dexamethasone in healthy volunteers (n = 30). Dexamethasone was used to suppress endogenous cortisol concentrations prior to and after single doses of 0.5, 2, 5 and 10 mg of Infacort (R) or 20 mg of Infacort (R)/hydrocortisone tablet/hydrocortisone intravenously. A plasma protein binding model was established using unbound and total cortisol concentrations, and sequentially integrated into the pharmacokinetic model. Results Both specific (non-linear) and non-specific (linear) protein binding were included in the cortisol binding model. A two-compartment disposition model with saturable absorption and constant endogenous cortisol baseline (Baseline (cort),15.5 nmol/L) described the data accurately. The predicted cortisol exposure for a given dose varied considerably within a small body weight range in individuals weighing < 20 kg. Conclusions Our semi-mechanistic population pharmacokinetic model for hydrocortisone captures the complex pharmacokinetics of hydrocortisone in a simplified but comprehensive framework. The predicted cortisol exposure indicated the importance of defining an accurate hydrocortisone dose to mimic physiological concentrations for neonates and infants weighing < 20 kg.}, language = {en} } @article{MakaravaMenzThevesetal.2014, author = {Makarava, Natallia and Menz, Stephan and Theves, Matthias and Huisinga, Wilhelm and Beta, Carsten and Holschneider, Matthias}, title = {Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {90}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.90.042703}, pages = {6}, year = {2014}, abstract = {Amoebae explore their environment in a random way, unless external cues like, e. g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales.}, language = {en} } @article{MaierWiljesHartungetal.2022, author = {Maier, Corinna Sabrina and Wiljes, Jana de and Hartung, Niklas and Kloft, Charlotte and Huisinga, Wilhelm}, title = {A continued learning approach for model-informed precision dosing}, series = {CPT: pharmacometrics \& systems pharmacology}, volume = {11}, journal = {CPT: pharmacometrics \& systems pharmacology}, number = {2}, publisher = {London}, address = {Nature Publ. Group}, issn = {2163-8306}, doi = {10.1002/psp4.12745}, pages = {185 -- 198}, year = {2022}, abstract = {Model-informed precision dosing (MIPD) is a quantitative dosing framework that combines prior knowledge on the drug-disease-patient system with patient data from therapeutic drug/ biomarker monitoring (TDM) to support individualized dosing in ongoing treatment. Structural models and prior parameter distributions used in MIPD approaches typically build on prior clinical trials that involve only a limited number of patients selected according to some exclusion/inclusion criteria. Compared to the prior clinical trial population, the patient population in clinical practice can be expected to also include altered behavior and/or increased interindividual variability, the extent of which, however, is typically unknown. Here, we address the question of how to adapt and refine models on the level of the model parameters to better reflect this real-world diversity. We propose an approach for continued learning across patients during MIPD using a sequential hierarchical Bayesian framework. The approach builds on two stages to separate the update of the individual patient parameters from updating the population parameters. Consequently, it enables continued learning across hospitals or study centers, because only summary patient data (on the level of model parameters) need to be shared, but no individual TDM data. We illustrate this continued learning approach with neutrophil-guided dosing of paclitaxel. The present study constitutes an important step toward building confidence in MIPD and eventually establishing MIPD increasingly in everyday therapeutic use.}, language = {en} } @misc{MaierHartungdeWiljesetal.2020, author = {Maier, Corinna and Hartung, Niklas and de Wiljes, Jana and Kloft, Charlotte and Huisinga, Wilhelm}, title = {Bayesian Data Assimilation to Support Informed Decision Making in Individualized Chemotherapy}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {827}, issn = {1866-8372}, doi = {10.25932/publishup-44550}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445500}, pages = {14}, year = {2020}, abstract = {An essential component of therapeutic drug/biomarker monitoring (TDM) is to combine patient data with prior knowledge for model-based predictions of therapy outcomes. Current Bayesian forecasting tools typically rely only on the most probable model parameters (maximum a posteriori (MAP) estimate). This MAP-based approach, however, does neither necessarily predict the most probable outcome nor does it quantify the risks of treatment inefficacy or toxicity. Bayesian data assimilation (DA) methods overcome these limitations by providing a comprehensive uncertainty quantification. We compare DA methods with MAP-based approaches and show how probabilistic statements about key markers related to chemotherapy-induced neutropenia can be leveraged for more informative decision support in individualized chemotherapy. Sequential Bayesian DA proved to be most computationally efficient for handling interoccasion variability and integrating TDM data. For new digital monitoring devices enabling more frequent data collection, these features will be of critical importance to improve patient care decisions in various therapeutic areas.}, language = {en} } @article{MaierHartungdeWiljesetal.2020, author = {Maier, Corinna and Hartung, Niklas and de Wiljes, Jana and Kloft, Charlotte and Huisinga, Wilhelm}, title = {Bayesian Data Assimilation to Support Informed Decision Making in Individualized Chemotherapy}, series = {CPT: Pharmacometrics \& Systems Pharmacology}, volume = {XX}, journal = {CPT: Pharmacometrics \& Systems Pharmacology}, publisher = {Nature Publ. Group}, address = {London}, issn = {2163-8306}, doi = {10.1002/psp4.12492}, pages = {12}, year = {2020}, abstract = {An essential component of therapeutic drug/biomarker monitoring (TDM) is to combine patient data with prior knowledge for model-based predictions of therapy outcomes. Current Bayesian forecasting tools typically rely only on the most probable model parameters (maximum a posteriori (MAP) estimate). This MAP-based approach, however, does neither necessarily predict the most probable outcome nor does it quantify the risks of treatment inefficacy or toxicity. Bayesian data assimilation (DA) methods overcome these limitations by providing a comprehensive uncertainty quantification. We compare DA methods with MAP-based approaches and show how probabilistic statements about key markers related to chemotherapy-induced neutropenia can be leveraged for more informative decision support in individualized chemotherapy. Sequential Bayesian DA proved to be most computationally efficient for handling interoccasion variability and integrating TDM data. For new digital monitoring devices enabling more frequent data collection, these features will be of critical importance to improve patient care decisions in various therapeutic areas.}, language = {en} }