@article{OeztuerkMarwanvonSpechtetal.2018, author = {{\"O}zt{\"u}rk, Ugur and Marwan, Norbert and von Specht, Sebastian and Korup, Oliver and Jensen, J.}, title = {A new centennial sea-level record for Antalya, Eastern Mediterranean}, series = {Journal of geophysical research-oceans}, volume = {123}, journal = {Journal of geophysical research-oceans}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9275}, doi = {10.1029/2018JC013906}, pages = {4503 -- 4517}, year = {2018}, abstract = {Quantitative estimates of sea-level rise in the Mediterranean Basin become increasingly accurate thanks to detailed satellite monitoring. However, such measuring campaigns cover several years to decades, while longer-term sea-level records are rare for the Mediterranean. We used a data archeological approach to reanalyze monthly mean sea-level data of the Antalya-I (1935-1977) tide gauge to fill this gap. We checked the accuracy and reliability of these data before merging them with the more recent records of the Antalya-II (1985-2009) tide gauge, accounting for an eight-year hiatus. We obtain a composite time series of monthly and annual mean sea levels spanning some 75 years, providing the longest record for the eastern Mediterranean Basin, and thus an essential tool for studying the region's recent sea-level trends. We estimate a relative mean sea-level rise of 2.2 ± 0.5 mm/year between 1935 and 2008, with an annual variability (expressed here as the standard deviation of the residuals, σresiduals = 41.4 mm) above that at the closest tide gauges (e.g., Thessaloniki, Greece, σresiduals = 29.0 mm). Relative sea-level rise accelerated to 6.0 ± 1.5 mm/year at Antalya-II; we attribute roughly half of this rate (~3.6 mm/year) to tectonic crustal motion and anthropogenic land subsidence. Our study highlights the value of data archeology for recovering and integrating historic tide gauge data for long-term sea-level and climate studies.}, language = {en} } @article{OeztuerkBozzolanHolcombeetal.2022, author = {{\"O}zt{\"u}rk, Ugur and Bozzolan, Elisa and Holcombe, Elizabeth A. and Shukla, Roopam and Pianosi, Francesca and Wagener, Thorsten}, title = {How climate change and unplanned urban sprawl bring more landslides}, series = {Nature : the international weekly journal of science}, volume = {608}, journal = {Nature : the international weekly journal of science}, number = {7922}, publisher = {Nature portfolio}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/d41586-022-02141-9}, pages = {262 -- 265}, year = {2022}, abstract = {More settlements will suffer as heavy rains and unregulated construction destabilize slopes in the tropics, models show.}, language = {en} } @phdthesis{Oeztuerk2018, author = {{\"O}zt{\"u}rk, Ugur}, title = {Learning more to predict landslides}, doi = {10.25932/publishup-42643}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426439}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 104}, year = {2018}, abstract = {Landslides are frequent natural hazards in rugged terrain, when the resisting frictional force of the surface of rupture yields to the gravitational force. These forces are functions of geological and morphological factors, such as angle of internal friction, local slope gradient or curvature, which remain static over hundreds of years; whereas more dynamic triggering events, such as rainfall and earthquakes, compromise the force balance by temporarily reducing resisting forces or adding transient loads. This thesis investigates landslide distribution and orientation due to landslide triggers (e.g. rainfall) at different scales (6-4∙10^5 km^2) and aims to link rainfall movement with the landslide distribution. It additionally explores the local impacts of the extreme rainstorms on landsliding and the role of precursory stability conditions that could be induced by an earlier trigger, such as an earthquake. Extreme rainfall is a common landslide trigger. Although several studies assessed rainfall intensity and duration to study the distribution of thus triggered landslides, only a few case studies quantified spatial rainfall patterns (i.e. orographic effect). Quantifying the regional trajectories of extreme rainfall could aid predicting landslide prone regions in Japan. To this end, I combined a non-linear correlation metric, namely event synchronization, and radial statistics to assess the general pattern of extreme rainfall tracks over distances of hundreds of kilometers using satellite based rainfall estimates. Results showed that, although the increase in rainfall intensity and duration positively correlates with landslide occurrence, the trajectories of typhoons and frontal storms were insufficient to explain landslide distribution in Japan. Extreme rainfall trajectories inclined northwestwards and were concentrated along some certain locations, such as coastlines of southern Japan, which was unnoticed in the landslide distribution of about 5000 rainfall-triggered landslides. These landslides seemed to respond to the mean annual rainfall rates. Above mentioned findings suggest further investigation on a more local scale to better understand the mechanistic response of landscape to extreme rainfall in terms of landslides. On May 2016 intense rainfall struck southern Germany triggering high waters and landslides. The highest damage was reported at the Braunsbach, which is located on the tributary-mouth fan formed by the Orlacher Bach. Orlacher Bach is a ~3 km long creek that drains a catchment of about ~6 km^2. I visited this catchment in June 2016 and mapped 48 landslides along the creek. Such high landslide activity was not reported in the nearby catchments within ~3300 km^2, despite similar rainfall intensity and duration based on weather radar estimates. My hypothesis was that several landslides were triggered by rainfall-triggered flash floods that undercut hillslope toes along the Orlacher Bach. I found that morphometric features such as slope and curvature play an important role in landslide distribution on this micro scale study site (<10 km^2). In addition, the high number of landslides along the Orlacher Bach could also be boosted by accumulated damages on hillslopes due karst weathering over longer time scales. Precursory damages on hillslopes could also be induced by past triggering events that effect landscape evolution, but this interaction is hard to assess independently from the latest trigger. For example, an earthquake might influence the evolution of a landscape decades long, besides its direct impacts, such as landslides that follow the earthquake. Here I studied the consequences of the 2016 Kumamoto Earthquake (MW 7.1) that triggered some 1500 landslides in an area of ~4000 km^2 in central Kyushu, Japan. Topography, i.e. local slope and curvature, both amplified and attenuated seismic waves, thus controlling the failure mechanism of those landslides (e.g. progressive). I found that topography fails in explaining the distribution and the preferred orientation of the landslides after the earthquake; instead the landslides were concentrated around the northeast of the rupture area and faced mostly normal to the rupture plane. This preferred location of the landslides was dominated mainly by the directivity effect of the strike-slip earthquake, which is the propagation of wave energy along the fault in the rupture direction; whereas amplitude variations of the seismic radiation altered the preferred orientation. I suspect that the earthquake directivity and the asymmetry of seismic radiation damaged hillslopes at those preferred locations increasing landslide susceptibility. Hence a future weak triggering event, e.g. scattered rainfall, could further trigger landslides at those damaged hillslopes.}, language = {en} } @article{OezcanBookhagenMusaoglu2018, author = {{\"O}zcan, Orkan and Bookhagen, Bodo and Musaoglu, Nebiye}, title = {Impact of the Ataturk Dam Lake on Agro-Meteorological Aspects of the Southeastern Anatolia Region, Turkey}, series = {Journal of the Indian Society of Remote Sensing}, volume = {46}, journal = {Journal of the Indian Society of Remote Sensing}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0255-660X}, doi = {10.1007/s12524-017-0703-9}, pages = {471 -- 481}, year = {2018}, abstract = {In this study, the spatial and temporal impacts of the Ataturk Dam on agro-meteorological aspects of the Southeastern Anatolia region have been investigated. Change detection and environmental impacts due to water-reserve changes in Ataturk Dam Lake have been determined and evaluated using multi-temporal Landsat satellite imageries and meteorological datasets within a period of 1984-2011. These time series have been evaluated for three time periods. Dam construction period constitutes the first part of the study. Land cover/use changes especially on agricultural fields under the Ataturk Dam Lake and its vicinity have been identified between the periods of 1984-1992. The second period comprises the 10-year period after the completion of filling up the reservoir in 1992. At this period, Landsat and meteorological time-series analyses are examined to assess the impact of the Ataturk Dam Lake on selected irrigated agricultural areas. For the last 9-year period from 2002 to 2011, the relationships between seasonal water-reserve changes and irrigated plains under changing climatic factors primarily driving vegetation activity (monthly, seasonal, and annual fluctuations of rainfall rate, air temperature, humidity) on the watershed have been investigated using a 30-year meteorological time series. The results showed that approximately 368 km(2) of agricultural fields have been affected because of inundation due to the Ataturk Dam Lake. However, irrigated agricultural fields have been increased by 56.3\% of the total area (1552 of 2756 km(2)) on Harran Plain within the period of 1984-2011.}, language = {en} } @misc{Zoeller2017, author = {Z{\"o}ller, Gert}, title = {Comment on "Estimation of Earthquake Hazard Parameters from Incomplete Data Files. Part III. Incorporation of Uncertainty of Earthquake-Occurrence Model" by Andrzej Kijko, Ansie Smit, and Markvard A. Sellevoll}, series = {Bulletin of the Seismological Society of America}, volume = {107}, journal = {Bulletin of the Seismological Society of America}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120160193}, pages = {1975 -- 1978}, year = {2017}, abstract = {Kijko et al. (2016) present various methods to estimate parameters that are relevant for probabilistic seismic-hazard assessment. One of these parameters, although not the most influential, is the maximum possible earthquake magnitude m(max). I show that the proposed estimation of m(max) is based on an erroneous equation related to a misuse of the estimator in Cooke (1979) and leads to unstable results. So far, reported finite estimations of m(max) arise from data selection, because the estimator in Kijko et al. (2016) diverges with finite probability. This finding is independent of the assumed distribution of earthquake magnitudes. For the specific choice of the doubly truncated Gutenberg-Richter distribution, I illustrate the problems by deriving explicit equations. Finally, I conclude that point estimators are generally not a suitable approach to constrain m(max).}, language = {en} } @article{ZwiebackKokeljGuentheretal.2018, author = {Zwieback, Simon and Kokelj, Steven V. and G{\"u}nther, Frank and Boike, Julia and Grosse, Guido and Hajnsek, Irena}, title = {Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-12-549-2018}, pages = {549 -- 564}, year = {2018}, abstract = {Predicting future thaw slump activity requires a sound understanding of the atmospheric drivers and geomorphic controls on mass wasting across a range of timescales. On sub-seasonal timescales, sparse measurements indicate that mass wasting at active slumps is often limited by the energy available for melting ground ice, but other factors such as rainfall or the formation of an insulating veneer may also be relevant. To study the sub-seasonal drivers, we derive topographic changes from single-pass radar interferometric data acquired by the TanDEM-X satellites. The estimated elevation changes at 12m resolution complement the commonly observed planimetric retreat rates by providing information on volume losses. Their high vertical precision (around 30 cm), frequent observations (11 days) and large coverage (5000 km(2)) allow us to track mass wasting as drivers such as the available energy change during the summer of 2015 in two study regions. We find that thaw slumps in the Tuktoyaktuk coastlands, Canada, are not energy limited in June, as they undergo limited mass wasting (height loss of around 0 cm day 1) despite the ample available energy, suggesting the widespread presence of early season insulating snow or debris veneer. Later in summer, height losses generally increase (around 3 cm day 1), but they do so in distinct ways. For many slumps, mass wasting tracks the available energy, a temporal pattern that is also observed at coastal yedoma cliffs on the Bykovsky Peninsula, Russia. However, the other two common temporal trajectories are asynchronous with the available energy, as they track strong precipitation events or show a sudden speed-up in late August respectively. The observed temporal patterns are poorly related to slump characteristics like the headwall height. The contrasting temporal behaviour of nearby thaw slumps highlights the importance of complex local and temporally varying controls on mass wasting.}, language = {en} } @article{ZurellGrimmRossmanithetal.2012, author = {Zurell, Damaris and Grimm, Volker and Rossmanith, Eva and Zbinden, Niklaus and Zimmermann, Niklaus E. and Schr{\"o}der-Esselbach, Boris}, title = {Uncertainty in predictions of range dynamics black grouse climbing the Swiss Alps}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {35}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2011.07200.x}, pages = {590 -- 603}, year = {2012}, abstract = {Empirical species distribution models (SDMs) constitute often the tool of choice for the assessment of rapid climate change effects on species vulnerability. Conclusions regarding extinction risks might be misleading, however, because SDMs do not explicitly incorporate dispersal or other demographic processes. Here, we supplement SDMs with a dynamic population model 1) to predict climate-induced range dynamics for black grouse in Switzerland, 2) to compare direct and indirect measures of extinction risks, and 3) to quantify uncertainty in predictions as well as the sources of that uncertainty. To this end, we linked models of habitat suitability to a spatially explicit, individual-based model. In an extensive sensitivity analysis, we quantified uncertainty in various model outputs introduced by different SDM algorithms, by different climate scenarios and by demographic model parameters. Potentially suitable habitats were predicted to shift uphill and eastwards. By the end of the 21st century, abrupt habitat losses were predicted in the western Prealps for some climate scenarios. In contrast, population size and occupied area were primarily controlled by currently negative population growth and gradually declined from the beginning of the century across all climate scenarios and SDM algorithms. However, predictions of population dynamic features were highly variable across simulations. Results indicate that inferring extinction probabilities simply from the quantity of suitable habitat may underestimate extinction risks because this may ignore important interactions between life history traits and available habitat. Also, in dynamic range predictions uncertainty in SDM algorithms and climate scenarios can become secondary to uncertainty in dynamic model components. Our study emphasises the need for principal evaluation tools like sensitivity analysis in order to assess uncertainty and robustness in dynamic range predictions. A more direct benefit of such robustness analysis is an improved mechanistic understanding of dynamic species responses to climate change.}, language = {en} } @article{ZurellBergerCabraletal.2010, author = {Zurell, Damaris and Berger, Uta and Cabral, Juliano Sarmento and Jeltsch, Florian and Meynard, Christine N. and Muenkemueller, Tamara and Nehrbass, Nana and Pagel, J{\"o}rn and Reineking, Bjoern and Schroeder, Boris and Grimm, Volker}, title = {The virtual ecologist approach : simulating data and observers}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2009.18284.x}, year = {2010}, abstract = {Ecologists carry a well-stocked toolbox with a great variety of sampling methods, statistical analyses and modelling tools, and new methods are constantly appearing. Evaluation and optimisation of these methods is crucial to guide methodological choices. Simulating error-free data or taking high-quality data to qualify methods is common practice. Here, we emphasise the methodology of the 'virtual ecologist' (VE) approach where simulated data and observer models are used to mimic real species and how they are 'virtually' observed. This virtual data is then subjected to statistical analyses and modelling, and the results are evaluated against the 'true' simulated data. The VE approach is an intuitive and powerful evaluation framework that allows a quality assessment of sampling protocols, analyses and modelling tools. It works under controlled conditions as well as under consideration of confounding factors such as animal movement and biased observer behaviour. In this review, we promote the approach as a rigorous research tool, and demonstrate its capabilities and practical relevance. We explore past uses of VE in different ecological research fields, where it mainly has been used to test and improve sampling regimes as well as for testing and comparing models, for example species distribution models. We discuss its benefits as well as potential limitations, and provide some practical considerations for designing VE studies. Finally, research fields are identified for which the approach could be useful in the future. We conclude that VE could foster the integration of theoretical and empirical work and stimulate work that goes far beyond sampling methods, leading to new questions, theories, and better mechanistic understanding of ecological systems.}, language = {en} } @article{ZuhrDolmanHoetal.2022, author = {Zuhr, Alexandra M. and Dolman, Andrew M. and Ho, Sze Ling and Groeneveld, Jeroen and Loewemark, Ludvig and Grotheer, Hendrik and Su, Chih-Chieh and Laepple, Thomas}, title = {Age-heterogeneity in marine sediments revealed by three-dimensional high-resolution radiocarbon measurements}, series = {Frontiers in Earth Science}, volume = {10}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2022.871902}, pages = {15}, year = {2022}, abstract = {Marine sedimentary archives are routinely used to reconstruct past environmental changes. In many cases, bioturbation and sedimentary mixing affect the proxy time-series and the age-depth relationship. While idealized models of bioturbation exist, they usually assume homogeneous mixing, thus that a single sample is representative for the sediment layer it is sampled from. However, it is largely unknown to which extent this assumption holds for sediments used for paleoclimate reconstructions. To shed light on 1) the age-depth relationship and its full uncertainty, 2) the magnitude of mixing processes affecting the downcore proxy variations, and 3) the representativity of the discrete sample for the sediment layer, we designed and performed a case study on South China Sea sediment material which was collected using a box corer and which covers the last glacial cycle. Using the radiocarbon content of foraminiferal tests as a tracer of time, we characterize the spatial age-heterogeneity of sediments in a three-dimensional setup. In total, 118 radiocarbon measurements were performed on defined small- and large-volume bulk samples ( similar to 200 specimens each) to investigate the horizontal heterogeneity of the sediment. Additionally, replicated measurements on small numbers of specimens (10 x 5 specimens) were performed to assess the heterogeneity within a sample volume. Visual assessment of X-ray images and a quantitative assessment of the mixing strength show typical mixing from bioturbation corresponding to around 10 cm mixing depth. Notably, our 3D radiocarbon distribution reveals that the horizontal heterogeneity (up to 1,250 years), contributing to the age uncertainty, is several times larger than the typically assumed radiocarbon based age-model error (single errors up to 250 years). Furthermore, the assumption of a perfectly bioturbated layer with no mixing underneath is not met. Our analysis further demonstrates that the age-heterogeneity might be a function of sample size; smaller samples might contain single features from the incomplete mixing and are thus less representative than larger samples. We provide suggestions for future studies, optimal sampling strategies for quantitative paleoclimate reconstructions and realistic uncertainty in age models, as well as discuss possible implications for the interpretation of paleoclimate records.}, language = {en} } @phdthesis{Zuhr2023, author = {Zuhr, Alexandra}, title = {Proxy signal formation in palaeoclimate archives}, doi = {10.25932/publishup-58286}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582864}, school = {Universit{\"a}t Potsdam}, pages = {xx, 167}, year = {2023}, abstract = {Throughout the last ~3 million years, the Earth's climate system was characterised by cycles of glacial and interglacial periods. The current warm period, the Holocene, is comparably stable and stands out from this long-term cyclicality. However, since the industrial revolution, the climate has been increasingly affected by a human-induced increase in greenhouse gas concentrations. While instrumental observations are used to describe changes over the past ~200 years, indirect observations via proxy data are the main source of information beyond this instrumental era. These data are indicators of past climatic conditions, stored in palaeoclimate archives around the Earth. The proxy signal is affected by processes independent of the prevailing climatic conditions. In particular, for sedimentary archives such as marine sediments and polar ice sheets, material may be redistributed during or after the initial deposition and subsequent formation of the archive. This leads to noise in the records challenging reliable reconstructions on local or short time scales. This dissertation characterises the initial deposition of the climatic signal and quantifies the resulting archive-internal heterogeneity and its influence on the observed proxy signal to improve the representativity and interpretation of climate reconstructions from marine sediments and ice cores. To this end, the horizontal and vertical variation in radiocarbon content of a box-core from the South China Sea is investigated. The three-dimensional resolution is used to quantify the true uncertainty in radiocarbon age estimates from planktonic foraminifera with an extensive sampling scheme, including different sample volumes and replicated measurements of batches of small and large numbers of specimen. An assessment on the variability stemming from sediment mixing by benthic organisms reveals strong internal heterogeneity. Hence, sediment mixing leads to substantial time uncertainty of proxy-based reconstructions with error terms two to five times larger than previously assumed. A second three-dimensional analysis of the upper snowpack provides insights into the heterogeneous signal deposition and imprint in snow and firn. A new study design which combines a structure-from-motion photogrammetry approach with two-dimensional isotopic data is performed at a study site in the accumulation zone of the Greenland Ice Sheet. The photogrammetry method reveals an intermittent character of snowfall, a layer-wise snow deposition with substantial contributions by wind-driven erosion and redistribution to the final spatially variable accumulation and illustrated the evolution of stratigraphic noise at the surface. The isotopic data show the preservation of stratigraphic noise within the upper firn column, leading to a spatially variable climate signal imprint and heterogeneous layer thicknesses. Additional post-depositional modifications due to snow-air exchange are also investigated, but without a conclusive quantification of the contribution to the final isotopic signature. Finally, this characterisation and quantification of the complex signal formation in marine sediments and polar ice contributes to a better understanding of the signal content in proxy data which is needed to assess the natural climate variability during the Holocene.}, language = {en} } @phdthesis{Zubaidah2010, author = {Zubaidah, Teti}, title = {Spatio-temporal characteristics of the geomagnetic field over the Lombok Island, the Lesser Sunda Islands region}, series = {Scientific Technical Report}, volume = {STR10}, journal = {Scientific Technical Report}, number = {07}, publisher = {Deutsches GeoForschungsZentrum GFZ}, address = {Potsdam}, doi = {10.2312/GFZ.b103-10079}, school = {Universit{\"a}t Potsdam}, pages = {xv, 117}, year = {2010}, abstract = {The Lombok Island is part of the Lesser Sunda Islands (LSI) region - Indonesia, situated along the Sunda-Banda Arcs transition. It lies between zones characterized by the highest intensity geomagnetic anomalies of this region, remarkable as one of the eight most important features provided on the 1st edition of World Digital Magnetic Anomaly Map. The seismicity of this region during the last years is high, while the geological and tectonic structures of this region are still not known in detail. Some local magnetic surveys have been conducted previously during 2004-2005. However, due to the lower accuracy of the used equipment and a limited number of stations, the qualities of the previous measurements are questionable for more interpretations. Thus a more detailed study to better characterize the geomagnetic anomaly -spatially and temporally- over this region and to deeply explore the related regional geology, tectonic and seismicity is needed. The intriguing geomagnetic anomalies over this island region vis-{\`a}-vis the socio-cultural situations lead to a study with a special aim to contribute to the assessment of the potential of natural hazards (earthquakes) as well as a new natural resource of energy (geothermal potential). This study is intended to discuss several crucial questions, including: i. The real values and the general pattern of magnetic anomalies over the island, as well as their relation to the regional one. ii. Any temporal changes of regional anomalies over the recent time. iii. The relationships between the anomalies and the geology and tectonic of this region, especially new insights that can be gained from the geomagnetic observations. iv. The relationships between the anomalies and the high seismicity of this region, especially some possible links between their variations to the earthquake occurrence. First, all available geomagnetic data of this region and results of the previous measurements are evaluated. The new geomagnetic surveys carried out in 2006 and 2007/2008 are then presented in detail, followed by the general description of data processing and data quality evaluation. The new results show the general pattern of contiguous negative-positive anomalies, revealing an active arc related subduction region. They agree with earlier results obtained by satellite, aeromagnetic, and marine platforms; and provide a much more detailed picture of the strong anomalies on this island. The temporal characteristics of regional anomalies show a decreasing strength of the dipolar structure, where decreasing of the field intensities is faster than the regional secular variations as defined by the global model (the 10th generation of IGRF). However, some exceptions (increasing of anomalies) have to be noted and further analyzed for several locations. Thereafter, simultaneous magnetic anomalies and gravity models are generated and interpreted in detail. Three profiles are investigated, providing new insights into the tectonics and geological evolution of the Lombok Island. Geological structure of this island can be divided as two main parts with different consecutive ages: an old part (from late Oligocene to late Miocene) in the South and a younger one (from Pliocene to Holocene) in the North. A new subduction in the back arc region (the Flores Thrust zone) is considered mature and active, showing a tendency of progressive subduction during 2005-2008. Geothermal potential in the northern part of this island can be mapped in more detail using these geomagnetic regional survey data. The earlier estimates of reservoir depth can be confirmed further to a depth of about 800 m. Evaluation of temporal changes of the anomalies gives some possible explanations related to the evolution of the back arc region, large stress accumulations over the LSI region, a specific electrical characteristic of the crust of the Lombok Island region, and a structural discontinuity over this island. Based on the results, several possible advanced studies involving geomagnetic data and anomaly investigations over the Lombok Island region can be suggested for the future: i. Monitoring the subduction activity of the back arc region (the Flores Thrust zone) and the accumulated stress over the LSI, that could contribute to middle term hazard assessment with a special attention to the earthquake occurrence in this region. Continuous geomagnetic field measurements from a geomagnetic observatory which can be established in the northern part of the Lombok Island and systematic measurements at several repeat stations can be useful in this regards. ii. Investigating the specific electrical characteristic (high conductivity) of the crust, that is probably related to some aquifer layers or metal mineralization. It needs other complementary geophysical methods, such as magnetotelluric (MT) or preferably DC resistivity measurements. iii. Determining the existence of an active structural fault over the Lombok Island, that could be related to long term hazard assessment over the LSI region. This needs an extension of geomagnetic investigations over the neighbouring islands (the Bali Island in the West and the Sumbawa Island in the East; probably also the Sumba and the Flores islands). This seems possible because the regional magnetic lineations might be used to delineate some structural discontinuities, based on the modelling of contrasts in crustal magnetizations.}, language = {en} } @article{ZozulyaKullerudRibackietal.2020, author = {Zozulya, Dmitry R. and Kullerud, Kare and Ribacki, Enrico and Altenberger, Uwe and Sudo, Masafumi and Savchenko, Yevgeny E.}, title = {The newly discovered neoproterozoic aillikite occurrence in Vinoren (Southern Norway)}, series = {Minerals}, volume = {10}, journal = {Minerals}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min10111029}, pages = {26}, year = {2020}, abstract = {During the period 750-600 Ma ago, prior to the final break-up of the supercontinent Rodinia, the crust of both the North American Craton and Baltica was intruded by significant amounts of rift-related magmas originating from the mantle. In the Proterozoic crust of Southern Norway, the 580 Ma old Fen carbonatite-ultramafic complex is a representative of this type of rocks. In this paper, we report the occurrence of an ultramafic lamprophyre dyke which possibly is linked to the Fen complex, although Ar-40/Ar-39 data from phenocrystic phlogopite from the dyke gave an age of 686 +/- 9 Ma. The lamprophyre dyke was recently discovered in one of the Kongsberg silver mines at Vinoren, Norway. Whole rock geochemistry, geochronological and mineralogical data from the ultramafic lamprophyre dyke are presented aiming to elucidate its origin and possible geodynamic setting. From the whole-rock composition of the Vinoren dyke, the rock could be recognized as transitional between carbonatite and kimberlite-II (orangeite). From its diagnostic mineralogy, the rock is classified as aillikite. The compositions and xenocrystic nature of several of the major and accessory minerals from the Vinoren aillikite are characteristic for diamondiferous rocks (kimberlites/lamproites/UML): Phlogopite with kinoshitalite-rich rims, chromite-spinel-ulvospinel series, Mg- and Mn-rich ilmenites, rutile and lucasite-(Ce). We suggest that the aillikite melt formed during partial melting of a MARID (mica-amphibole-rutile-ilmenite-diopside)-like source under CO2 fluxing. The pre-rifting geodynamic setting of the Vinoren aillikite before the Rodinia supercontinent breakup suggests a relatively thick SCLM (Subcontinental Lithospheric Mantle) during this stage and might indicate a diamond-bearing source for the parental melt. This is in contrast to the about 100 Ma younger Fen complex, which were derived from a thin SCLM.}, language = {en} } @article{ZornLeCorvecVarleyetal.2019, author = {Zorn, Edgar Ulrich and Le Corvec, Nicolas and Varley, Nick R. and Salzer, Jacqueline T. and Walter, Thomas R. and Navarro-Ochoa, Carlos and Vargas-Bracamontes, Dulce M. and Thiele, Samuel T. and Ar{\´a}mbula Mendoza, Ra{\´u}l}, title = {Load stress controls on directional lava dome growth at Volcan de Colima, Mexico}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00084}, pages = {18}, year = {2019}, abstract = {During eruptive activity of andesitic stratovolcanoes, the extrusion of lava domes, their collapse and intermittent explosions are common volcanic hazards. Many lava domes grow in a preferred direction, in turn affecting the direction of lava flows and pyroclastic density currents. Access to active lava domes is difficult and hazardous, so detailed data characterizing lava dome growth are typically limited, keeping the processes controlling the directionality of extrusions unclear. Here we combine TerraSAR-X satellite radar observations with high-resolution airborne photogrammetry to assess morphological changes, and perform finite element modeling to investigate the impact of loading stress on shallow magma ascent directions associated with lava dome extrusion and crater formation at Volcan de Colima, Mexico. The TerraSAR-X data, acquired in similar to 1-m resolution spotlight mode, enable us to derive a chronology of the eruptive processes from intensity-based time-lapse observations of the general crater and dome evolution. The satellite images are complemented by close-range airborne photos, processed by the Structure-from-Motion workflow. This allows the derivation of high-resolution digital elevation models, providing insight into detailed loading and unloading features. During the observation period from Jan-2013 to Feb-2016, we identify a dominantly W-directed dome growth and lava flow production until Jan-2015. In Feb-2015, following the removal of the active summit dome, the surface crater widened and elongated along a NE-SW axis. Later in May-2015, a new dome grew toward the SW of the crater while a separate vent developed in the NE of the crater, reflecting a change in the direction of magma ascent and possible conduit bifurcation. Finite element models show a significant stress change in agreement with the observed magma ascent direction changes in response to the changing surface loads, both for loading (dome growth) and unloading (crater forming excavation) cases. These results allow insight into shallow dome growth dynamics and the migration of magma ascent in response to changing volcano summit morphology. They further highlight the importance of detailed volcano summit morphology surveillance, as changes in direction or location of dome extrusion may have major implications regarding the directions of potential volcanic hazards, such as pyroclastic density currents generated by dome collapse.}, language = {en} } @phdthesis{Zorn2020, author = {Zorn, Edgar Ulrich}, title = {Monitoring lava dome growth and deformation with photogrammetric methods and modelling}, doi = {10.25932/publishup-48360}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483600}, school = {Universit{\"a}t Potsdam}, pages = {IX, 167}, year = {2020}, abstract = {Lava domes are severely hazardous, mound-shaped extrusions of highly viscous lava and commonly erupt at many active stratovolcanoes around the world. Due to gradual growth and flank oversteepening, such lava domes regularly experience partial or full collapses, resulting in destructive and far-reaching pyroclastic density currents. They are also associated with cyclic explosive activity as the complex interplay of cooling, degassing, and solidification of dome lavas regularly causes gas pressurizations on the dome or the underlying volcano conduit. Lava dome extrusions can last from days to decades, further highlighting the need for accurate and reliable monitoring data. This thesis aims to improve our understanding of lava dome processes and to contribute to the monitoring and prediction of hazards posed by these domes. The recent rise and sophistication of photogrammetric techniques allows for the extraction of observational data in unprecedented detail and creates ideal tools for accomplishing this purpose. Here, I study natural lava dome extrusions as well as laboratory-based analogue models of lava dome extrusions and employ photogrammetric monitoring by Structure-from-Motion (SfM) and Particle-Image-Velocimetry (PIV) techniques. I primarily use aerial photography data obtained by helicopter, airplanes, Unoccupied Aircraft Systems (UAS) or ground-based timelapse cameras. Firstly, by combining a long time-series of overflight data at Volc{\´a}n de Colima, M{\´e}xico, with seismic and satellite radar data, I construct a detailed timeline of lava dome and crater evolution. Using numerical model, the impact of the extrusion on dome morphology and loading stress is further evaluated and an impact on the growth direction is identified, bearing important implications for the location of collapse hazards. Secondly, sequential overflight surveys at the Santiaguito lava dome, Guatemala, reveal surface motion data in high detail. I quantify the growth of the lava dome and the movement of a lava flow, showing complex motions that occur on different timescales and I provide insight into rock properties relevant for hazard assessment inferred purely by photogrammetric processing of remote sensing data. Lastly, I recreate artificial lava dome and spine growth using analogue modelling under controlled conditions, providing new insights into lava extrusion processes and structures as well as the conditions in which they form. These findings demonstrate the capabilities of photogrammetric data analyses to successfully monitor lava dome growth and evolution while highlighting the advantages of complementary modelling methods to explain the observed phenomena. The results presented herein further bear important new insights and implications for the hazards posed by lava domes.}, language = {en} } @article{ZollerHolschneiderBenZion2004, author = {Zoller, Gert and Holschneider, Matthias and Ben-Zion, Yehuda}, title = {Quasi-static and quasi-dynamic modeling of earthquake failure at intermediate scales}, year = {2004}, abstract = {We present a model for earthquake failure at intermediate scales (space: 100 m-100 km, time: 100 m/nu(shear}, language = {en} } @phdthesis{Zolitschka1996, author = {Zolitschka, Bernd}, title = {Pal{\"a}oklimatische Bedeutung laminierter Sedimente}, pages = {196 S. : Ill.}, year = {1996}, language = {de} } @article{ZobirOberhaensli2013, author = {Zobir, Soraya Hadj and Oberh{\"a}nsli, Roland}, title = {The sidi Mohamed peridotites (Edough Massif, NE Algeria) - evidence for an upper mantle origin}, series = {Journal of earth system science}, volume = {122}, journal = {Journal of earth system science}, number = {6}, publisher = {Indian Academy of Science}, address = {Bangalore}, issn = {0253-4126}, doi = {10.1007/s12040-013-0358-z}, pages = {1455 -- 1465}, year = {2013}, abstract = {The Hercynian Edough massif is the easternmost crystalline massif of the Algerian coast. It consists of two tectonically superposed units composed of micaschists, gneisses, and peridotite. This study concentrates on the small and isolated Sidi Mohamed peridotite outcrop area (0.03 km(2)). The Sidi Mohamed peridotite is composed mainly of harzburgites (Mg-rich olivine and orthopyroxene as major minerals). The Ni (2051-2920 ppm), Cr (2368-5514 ppm) and MgO (similar to 28-35 wt.\%) whole-rock composition and the relative depletion in Nb make these harzburgites comparable to depleted peridotites related to a subduction zone. We suggest that the Sidi Mohamed ultramafic body was derived directly from the upper mantle and tectonically incorporated into the gneiss units of the Edough metamorphic core complex in a subduction environment.}, language = {en} } @article{ZobirMocek2012, author = {Zobir, Soraya Hadj and Mocek, Beate}, title = {Determination of the source rocks for the diatexites from the Edough Massif, Annaba, NE Algeria}, series = {Journal of African earth sciences}, volume = {69}, journal = {Journal of African earth sciences}, number = {13}, publisher = {Elsevier}, address = {Oxford}, issn = {1464-343X}, doi = {10.1016/j.jafrearsci.2012.04.004}, pages = {26 -- 33}, year = {2012}, abstract = {The crystalline Edough Massif is located in the oriental part of the Algerian coastline. It consists of two tectonically superposed units of gneisses, augen-gneisses and migmatitic gneisses in the lower unit and micaschists in the upper unit. The crystalline rocks underwent a low to moderate degree of metamorphism; the gneisses suffered partial melting. They display migmatitic features such as nebulitic structures with contorted leucosome layers and K-feldspar porphyroblasts and thus can be classified as diatexites. The mineralogical composition of these rocks is very homogenous and consists of K-feldspar, micas and quartz. The feldspar-rich, arkosic nature of the outcrop implies a granitic source rock. High K2O/Na2O ratios and high A/CNK > 1.1 indicate an S-type granite source and a peraluminous composition of the protolith respectively. Chondrite normalized REE distribution patterns of the Edough diatexites show gently inclined patterns with a minor negative Eu anomaly (Eu/Eu* = 0.36-0.49), which points to a very slightly differentiated granitic source. The REE pattern and trace element data of the diatexites are similar to those of average Proterozoic upper continental crust, which suggests that they are derived mainly from upper continental crust and were deposited in continental margins.}, language = {en} } @article{ZobirAltenbergerGuenter2014, author = {Zobir, Soraya Hadj and Altenberger, Uwe and G{\"u}nter, Christina}, title = {Geochemistry and petrology of metamorphosed submarine basic ashes in the Edough Massif (Cap de Garde, Annaba, northeastern Algeria)}, series = {Comptes rendus geoscience}, volume = {346}, journal = {Comptes rendus geoscience}, number = {9-10}, publisher = {Elsevier}, address = {Paris}, issn = {1631-0713}, doi = {10.1016/j.crte.2014.09.002}, pages = {244 -- 254}, year = {2014}, abstract = {The study presents the first evidence of metamorphosed submarine ashes in the Edough Massif, in northeastern Algeria. It occurs below the greenschist-facies Tellian units that represent the thrusted Mesozoic to Eocene passive paleomargin of northern Africa deposited on thinned continental crust. The metamorphic complex consists of tectonically superposed units composed of gneisses (lower unit) and micaschists (upper unit). At the Cap de Garde, these units enclose an "intermediate unit" composed of micaschists and meter-thick layers of marbles, which are sometimes intercalated with amphibolites. The latter occur as discontinuous small lenses and layers. The amphibolites are parallel to the primary bedding of the marbles and the main foliation. Chemical markers and field observations indicate that they are metamorphic equivalents of basic igneous rocks. The lenticular character, low thickness and multiple intercalations with marine sediments and the unusual high lithium concentrations suggest subaqueous near-source basaltic ash-fall deposits in a marine environment. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.}, language = {en} } @article{ZimmermannStoofLeichsenringKruseetal.2020, author = {Zimmermann, Heike Hildegard and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and M{\"u}ller, Juliane and Stein, Ruediger and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years}, series = {Ocean science}, volume = {16}, journal = {Ocean science}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1812-0784}, doi = {10.5194/os-16-1017-2020}, pages = {1017 -- 1032}, year = {2020}, abstract = {The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7\% of our sequences being assigned to diatoms across 18 different families, with 38.6\% of them being resolved to species and 25.8\% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2\% of the assemblage point towards past sea-ice presence.}, language = {en} }