@article{OeztuerkMarwanvonSpechtetal.2018, author = {{\"O}zt{\"u}rk, Ugur and Marwan, Norbert and von Specht, Sebastian and Korup, Oliver and Jensen, J.}, title = {A new centennial sea-level record for Antalya, Eastern Mediterranean}, series = {Journal of geophysical research-oceans}, volume = {123}, journal = {Journal of geophysical research-oceans}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9275}, doi = {10.1029/2018JC013906}, pages = {4503 -- 4517}, year = {2018}, abstract = {Quantitative estimates of sea-level rise in the Mediterranean Basin become increasingly accurate thanks to detailed satellite monitoring. However, such measuring campaigns cover several years to decades, while longer-term sea-level records are rare for the Mediterranean. We used a data archeological approach to reanalyze monthly mean sea-level data of the Antalya-I (1935-1977) tide gauge to fill this gap. We checked the accuracy and reliability of these data before merging them with the more recent records of the Antalya-II (1985-2009) tide gauge, accounting for an eight-year hiatus. We obtain a composite time series of monthly and annual mean sea levels spanning some 75 years, providing the longest record for the eastern Mediterranean Basin, and thus an essential tool for studying the region's recent sea-level trends. We estimate a relative mean sea-level rise of 2.2 ± 0.5 mm/year between 1935 and 2008, with an annual variability (expressed here as the standard deviation of the residuals, σresiduals = 41.4 mm) above that at the closest tide gauges (e.g., Thessaloniki, Greece, σresiduals = 29.0 mm). Relative sea-level rise accelerated to 6.0 ± 1.5 mm/year at Antalya-II; we attribute roughly half of this rate (~3.6 mm/year) to tectonic crustal motion and anthropogenic land subsidence. Our study highlights the value of data archeology for recovering and integrating historic tide gauge data for long-term sea-level and climate studies.}, language = {en} } @article{vonSpechtHeidbachCottonetal.2018, author = {von Specht, Sebastian and Heidbach, Oliver and Cotton, Fabrice Pierre and Zang, Arno}, title = {Uncertainty reduction of stress tensor inversion with data-driven catalogue selection}, series = {Geophysical journal international}, volume = {214}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggy240}, pages = {2250 -- 2263}, year = {2018}, abstract = {The selection of earthquake focal mechanisms (FMs) for stress tensor inversion (STI) is commonly done on a spatial basis, that is, hypocentres. However, this selection approach may include data that are undesired, for example, by mixing events that are caused by different stress tensors when for the STI a single stress tensor is assumed. Due to the significant increase of FM data in the past decades, objective data-driven data selection is feasible, allowing more refined FM catalogues that avoid these issues and provide data weights for the STI routines. We present the application of angular classification with expectation-maximization (ACE) as a tool for data selection. ACE identifies clusters of FM without a priori information. The identified clusters can be used for the classification of the style-of-faulting and as weights of the FM data. We demonstrate that ACE effectively selects data that can be associated with a single stress tensor. Two application examples are given for weighted STI from South America. We use the resulting clusters and weights as a priori information for an STI for these regions and show that uncertainties of the stress tensor estimates are reduced significantly.}, language = {en} } @article{KwiatekMartinezGarzonPlenkersetal.2018, author = {Kwiatek, Grzegorz and Martinez-Garzon, Patricia and Plenkers, K. and Leonhardt, Maria and Zang, Arno and von Specht, Sebastian and Dresen, Georg and Bohnhoff, Marco}, title = {Insights into complex subdecimeter fracturing processes occurring during a water injection experiment at depth in Aspo Hard Rock Laboratory, Sweden}, series = {Journal of geophysical research : Solid earth}, volume = {123}, journal = {Journal of geophysical research : Solid earth}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2017JB014715}, pages = {6616 -- 6635}, year = {2018}, abstract = {We investigate the source characteristics of picoseismicity (M-w < -2) recorded during a hydraulic fracturing in situ experiment performed in the underground Aspo Hard Rock Laboratory, Sweden. The experiment consisted of six stimulations driven by three different water injection schemes and was performed inside a 28-m-long, horizontal borehole located at 410-m depth. The fracturing processes were monitored with a variety of seismic networks including broadband seismometers, geophones, high-frequency accelerometers, and acoustic emission sensors thereby covering a wide frequency band between 0.01 and 100,000Hz. Here we study the high-frequency signals with dominant frequencies exceeding 1000 Hz. The combined seismic network allowed for detection and detailed analysis of 196 small-scale seismic events with moment magnitudes M-W < -3.5 (source sizes of decimeter scale) that occurred solely during the stimulations and shortly after. The double-difference relocated hypocenter catalog as well as source parameters were used to study the physical characteristics of the induced seismicity and then compared to the stimulation parameters. We observe a spatiotemporal migration of the picoseismic events away and toward the injection intervals in direct correlation with changes in the hydraulic energy (product of fluid injection pressure and injection rate). We find that the total radiated seismic energy is extremely low with respect to the product of injected fluid volume and pressure (hydraulic energy). The radiated seismic energy correlates well with the hydraulic energy rate. The obtained fault plane solutions for particularly well-characterized events signify the reactivation of preexisting rock defects under influence of increased pore fluid pressure on fault plane orientations in good correspondence with the local stress field orientation.}, language = {en} }